• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
precalculus - Hope College Math Department
precalculus - Hope College Math Department

Geometry Student Text Chapter 5
Geometry Student Text Chapter 5

Chapter 5 Congruence Theorems
Chapter 5 Congruence Theorems

Congruent Triangles
Congruent Triangles

Class Notes
Class Notes

problem solving - A Learning Place A Teaching Place
problem solving - A Learning Place A Teaching Place

Answer - Skyline School
Answer - Skyline School

... The variable (mRQS) is being added by 560 Do the inverse on both sides of the equal sign Bring down 560 ...
circles
circles

chapter 2 - Telluride Middle/High School
chapter 2 - Telluride Middle/High School

Trigonometric Identities
Trigonometric Identities

... Case I represents the coterminal angle in the same quadrant – the signs of both sine and cosine stay the same for the new angle. Case II represents adding 180 degrees to the original angle. When than happens, the sine and cosine of the new angle both take on the opposite signs they had originally. C ...
Geometry Curriculum Guide
Geometry Curriculum Guide

... perpendicular lines, parallel lines, and line segments. 5) G.CO.5: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto ...
polygon
polygon

Congruence Criteria for Triangles—SAA and HL
Congruence Criteria for Triangles—SAA and HL

9th CBSE {SA - 1} Revision Pack Booklet-6
9th CBSE {SA - 1} Revision Pack Booklet-6

Similar Triangles I
Similar Triangles I

ExamView - Unit 6 Review.tst
ExamView - Unit 6 Review.tst

Solutions - Durham University
Solutions - Durham University

Investigating Geometry Activity: The Transitive Property of Parallel
Investigating Geometry Activity: The Transitive Property of Parallel

Teacher Notes PDF - TI Education
Teacher Notes PDF - TI Education

04 Measurement.qxd - Annenberg Learner
04 Measurement.qxd - Annenberg Learner

ExamView - SCA 1 Review.tst
ExamView - SCA 1 Review.tst

Course Guidelines - epawelka-math
Course Guidelines - epawelka-math

...  Introduce HL Theorem with the Geogebra file Sec4-6-HL.ggb. It has two right triangles whose lengths can be changed. Show that, if one pair of legs and the hypotenuses have the same length, the other legs will be the same, too, giving SSS congruence.  There may be some cases in which it doesn’t qu ...
Angles and Equations Essential
Angles and Equations Essential

ExamView - proof practice.tst
ExamView - proof practice.tst

2nd Unit 3: Parallel and Perpendicular Lines
2nd Unit 3: Parallel and Perpendicular Lines

< 1 ... 102 103 104 105 106 107 108 109 110 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report