similar poly similar polygons olygons
									
... Although the size of the two shapes can be different, the sizes of the two shapes must differ by a factor ...
                        	... Although the size of the two shapes can be different, the sizes of the two shapes must differ by a factor ...
									Sides Not Included
									
... proven. You will prove the Angle-Angle-Side Congruence Theorem. The Angle-Angle-Side Congruence Theorem states: “If two angles and a non-included side of one triangle are congruent to the corresponding angles and the corresponding non-included side of a second triangle, then the triangles are congru ...
                        	... proven. You will prove the Angle-Angle-Side Congruence Theorem. The Angle-Angle-Side Congruence Theorem states: “If two angles and a non-included side of one triangle are congruent to the corresponding angles and the corresponding non-included side of a second triangle, then the triangles are congru ...
									Chapter 1
									
... he word geometry comes from two ancient Greek words, ge, meaning earth, and metria, meaning measure. So, literally, geometry means to measure the earth. It was the first branch of math that began with certain assumptions and used them to draw more complicated conclusions. Over time, geometry has bec ...
                        	... he word geometry comes from two ancient Greek words, ge, meaning earth, and metria, meaning measure. So, literally, geometry means to measure the earth. It was the first branch of math that began with certain assumptions and used them to draw more complicated conclusions. Over time, geometry has bec ...
									Mathematics Geometry
									
... Geometry conceptual category found in the high school CCSS. The Mathematical Practice Standards apply throughout each course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sen ...
                        	... Geometry conceptual category found in the high school CCSS. The Mathematical Practice Standards apply throughout each course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sen ...
Euclidean geometry
                        Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language.For more than two thousand years, the adjective ""Euclidean"" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An implication of Albert Einstein's theory of general relativity is that physical space itself is not Euclidean, and Euclidean space is a good approximation for it only where the gravitational field is weak.Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axioms to propositions without the use of coordinates. This is in contrast to analytic geometry, which uses coordinates.