• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Verdana 30 pt
Verdana 30 pt

Worksheet Pages to Print
Worksheet Pages to Print

Chapter 2 Unit Assessment (100pts)
Chapter 2 Unit Assessment (100pts)

Continuity - RangerCalculus
Continuity - RangerCalculus

Functions and Graphs
Functions and Graphs

Math 111 Week Number Four Notes
Math 111 Week Number Four Notes

Relations and Functions
Relations and Functions

Relations and Functions
Relations and Functions

Relations & Functions - Paramus Public Schools
Relations & Functions - Paramus Public Schools

Ex 1 - gmitWEB
Ex 1 - gmitWEB

Functions
Functions

Define Polynomials Classifying Polynomials According to Their
Define Polynomials Classifying Polynomials According to Their

x - Dalton State
x - Dalton State

x - peacock
x - peacock

undoing a square root and undoing
undoing a square root and undoing

... Their discussion should include the fact that any of the range values for f can be used in the function g, thus the domain of g is exactly the same as the domain of f (all real numbers). However, the range of g is only real numbers greater than or equal to zero. The domain of h can only be x-values ...
Chapter 4 Polynomial and Rational Functions
Chapter 4 Polynomial and Rational Functions

Functions - Computer Science, Stony Brook University
Functions - Computer Science, Stony Brook University

Calculating the Domain and the Range of Functions
Calculating the Domain and the Range of Functions

VIII. Exponential and logarithmic functions
VIII. Exponential and logarithmic functions

PDF
PDF

File
File

Relations & Functions
Relations & Functions

key - BetsyMcCall.net
key - BetsyMcCall.net

How to Enter Answers in WeBWorK
How to Enter Answers in WeBWorK

Section 3.2 – Rolle’s Theorem and the Mean Value Theorem
Section 3.2 – Rolle’s Theorem and the Mean Value Theorem

< 1 ... 31 32 33 34 35 36 37 38 39 ... 55 >

Function (mathematics)



In mathematics, a function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output. An example is the function that relates each real number x to its square x2. The output of a function f corresponding to an input x is denoted by f(x) (read ""f of x""). In this example, if the input is −3, then the output is 9, and we may write f(−3) = 9. Likewise, if the input is 3, then the output is also 9, and we may write f(3) = 9. (The same output may be produced by more than one input, but each input gives only one output.) The input variable(s) are sometimes referred to as the argument(s) of the function.Functions of various kinds are ""the central objects of investigation"" in most fields of modern mathematics. There are many ways to describe or represent a function. Some functions may be defined by a formula or algorithm that tells how to compute the output for a given input. Others are given by a picture, called the graph of the function. In science, functions are sometimes defined by a table that gives the outputs for selected inputs. A function could be described implicitly, for example as the inverse to another function or as a solution of a differential equation.The input and output of a function can be expressed as an ordered pair, ordered so that the first element is the input (or tuple of inputs, if the function takes more than one input), and the second is the output. In the example above, f(x) = x2, we have the ordered pair (−3, 9). If both input and output are real numbers, this ordered pair can be viewed as the Cartesian coordinates of a point on the graph of the function.In modern mathematics, a function is defined by its set of inputs, called the domain; a set containing the set of outputs, and possibly additional elements, as members, called its codomain; and the set of all input-output pairs, called its graph. Sometimes the codomain is called the function's ""range"", but more commonly the word ""range"" is used to mean, instead, specifically the set of outputs (this is also called the image of the function). For example, we could define a function using the rule f(x) = x2 by saying that the domain and codomain are the real numbers, and that the graph consists of all pairs of real numbers (x, x2). The image of this function is the set of non-negative real numbers. Collections of functions with the same domain and the same codomain are called function spaces, the properties of which are studied in such mathematical disciplines as real analysis, complex analysis, and functional analysis.In analogy with arithmetic, it is possible to define addition, subtraction, multiplication, and division of functions, in those cases where the output is a number. Another important operation defined on functions is function composition, where the output from one function becomes the input to another function.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report