• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Full text
Full text

SEMESTER 1
SEMESTER 1

Notes for Lesson 1-8: Introduction to Functions
Notes for Lesson 1-8: Introduction to Functions

Document
Document

inverse functions
inverse functions

notes 1_4 continuity and one
notes 1_4 continuity and one

... A function is continuous on an open interval (a, b) when the function is continuous at each point in the interval. A function that is continuous on the entire real number line (- ∞, ∞) is everywhere continuous. Define the following. Draw pictures to help! ...
2.1 Quadratic Functions and Models
2.1 Quadratic Functions and Models

Midterm Review Sheet 1 The Three Defining Properties of Real
Midterm Review Sheet 1 The Three Defining Properties of Real

SRWColAlg6_02_01
SRWColAlg6_02_01

Short Introduction to Elementary Set Theory and Logic
Short Introduction to Elementary Set Theory and Logic

5-1A Use Properties of Exponents
5-1A Use Properties of Exponents

Math 299 Supplement: Modular Arithmetic Nov 8, 2013 Numbers
Math 299 Supplement: Modular Arithmetic Nov 8, 2013 Numbers

Solution
Solution

Document
Document

Full text
Full text

Relations
Relations

Haskell
Haskell

Haskell 5A
Haskell 5A

Exponential Functions
Exponential Functions

Bridging Units: Resource Pocket 2
Bridging Units: Resource Pocket 2

file
file

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH
1. SEQUENCES INVOLVING EXPONENTIAL GROWTH

Extra Examples Section 2.3—Functions — Page references
Extra Examples Section 2.3—Functions — Page references

Algebra II Module 1, Topic A, Lesson 11: Student
Algebra II Module 1, Topic A, Lesson 11: Student

Graphing
Graphing

... (1.5,-25). Notice that the function (from left to right) increases to the maximum point, decreases between the maximum point and the minimum point, then increases past the minimum point. The values of x where the relative extrema occur are 1.5 and – 3. These values of x are called CRITICAL NUMBERS. ...
< 1 ... 25 26 27 28 29 30 31 32 33 ... 55 >

Function (mathematics)



In mathematics, a function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output. An example is the function that relates each real number x to its square x2. The output of a function f corresponding to an input x is denoted by f(x) (read ""f of x""). In this example, if the input is −3, then the output is 9, and we may write f(−3) = 9. Likewise, if the input is 3, then the output is also 9, and we may write f(3) = 9. (The same output may be produced by more than one input, but each input gives only one output.) The input variable(s) are sometimes referred to as the argument(s) of the function.Functions of various kinds are ""the central objects of investigation"" in most fields of modern mathematics. There are many ways to describe or represent a function. Some functions may be defined by a formula or algorithm that tells how to compute the output for a given input. Others are given by a picture, called the graph of the function. In science, functions are sometimes defined by a table that gives the outputs for selected inputs. A function could be described implicitly, for example as the inverse to another function or as a solution of a differential equation.The input and output of a function can be expressed as an ordered pair, ordered so that the first element is the input (or tuple of inputs, if the function takes more than one input), and the second is the output. In the example above, f(x) = x2, we have the ordered pair (−3, 9). If both input and output are real numbers, this ordered pair can be viewed as the Cartesian coordinates of a point on the graph of the function.In modern mathematics, a function is defined by its set of inputs, called the domain; a set containing the set of outputs, and possibly additional elements, as members, called its codomain; and the set of all input-output pairs, called its graph. Sometimes the codomain is called the function's ""range"", but more commonly the word ""range"" is used to mean, instead, specifically the set of outputs (this is also called the image of the function). For example, we could define a function using the rule f(x) = x2 by saying that the domain and codomain are the real numbers, and that the graph consists of all pairs of real numbers (x, x2). The image of this function is the set of non-negative real numbers. Collections of functions with the same domain and the same codomain are called function spaces, the properties of which are studied in such mathematical disciplines as real analysis, complex analysis, and functional analysis.In analogy with arithmetic, it is possible to define addition, subtraction, multiplication, and division of functions, in those cases where the output is a number. Another important operation defined on functions is function composition, where the output from one function becomes the input to another function.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report