
DISCRETE MATHEMATICAL STRUCTURES
... elements is irrelevant, so {a, b} = {b, a}. If the order of the elements is relevant, then we use a different object called ordered pair, represented (a, b). Now (a, b) = (b, a) (unless a = b). In general (a, b) = (a!, b! ) iff a = a! and b = b! . Given two sets A, B, their Cartesian product A × B i ...
... elements is irrelevant, so {a, b} = {b, a}. If the order of the elements is relevant, then we use a different object called ordered pair, represented (a, b). Now (a, b) = (b, a) (unless a = b). In general (a, b) = (a!, b! ) iff a = a! and b = b! . Given two sets A, B, their Cartesian product A × B i ...
Student Workbook Options
... Chapter 1: Equations and Inequalities Section 1.1: Linear Equations A linear equation in one variable is an equation equivalent in form to _______________ where a and b are real numbers and _____. Why does the definition say a ≠ 0 ? What type of equation would it be if a = 0 ? To solve an equation m ...
... Chapter 1: Equations and Inequalities Section 1.1: Linear Equations A linear equation in one variable is an equation equivalent in form to _______________ where a and b are real numbers and _____. Why does the definition say a ≠ 0 ? What type of equation would it be if a = 0 ? To solve an equation m ...
Consequence Operators for Defeasible - SeDiCI
... than the one used in classical logic. This leads us to consider a specialized consequence operator for Horn-like logics. Formally: De¯nition 3.1 (Consequence Operator Th sld (¡ )). Given an argumentative theory ¡ , we de¯ne Thsld (¡ ) = f[;; fni g]:h j ¡ j»Arg [;; fnig]:hg According to de¯nition 3.1 ...
... than the one used in classical logic. This leads us to consider a specialized consequence operator for Horn-like logics. Formally: De¯nition 3.1 (Consequence Operator Th sld (¡ )). Given an argumentative theory ¡ , we de¯ne Thsld (¡ ) = f[;; fni g]:h j ¡ j»Arg [;; fnig]:hg According to de¯nition 3.1 ...
LPF and MPLω — A Logical Comparison of VDM SL and COLD-K
... Another approach has been followed in LPF, the logic underlying VDM SL. Here the possibility of undefinedness is extended to the formulae by adding a truth value N (neithertrue-nor-false), so terms and formulae are in this respect treated on an equal footing. This makes LPF a non-classical logic wit ...
... Another approach has been followed in LPF, the logic underlying VDM SL. Here the possibility of undefinedness is extended to the formulae by adding a truth value N (neithertrue-nor-false), so terms and formulae are in this respect treated on an equal footing. This makes LPF a non-classical logic wit ...
Chapter 3 Proof
... eventually you will find yourself with certain unproved assumptions at its foundation. What good is a logical proof if it is based on things we can not prove? After all, if our theorem is proved on the basis of assumptions that are not proved, why not simply assume the theorem to be true and be done ...
... eventually you will find yourself with certain unproved assumptions at its foundation. What good is a logical proof if it is based on things we can not prove? After all, if our theorem is proved on the basis of assumptions that are not proved, why not simply assume the theorem to be true and be done ...
Exam 1 Review Key
... Let U = {all soda pops}, A = {all diet soda pops}, B = {all cola soda pops}, C = {all soda pops in cans}, and D = {all caffeine-free soda pops}. Describe the set in words. 8) Aʹ ∩ C A) All diet soda pops and all soda pops in cans B) All non-diet soda pops in cans C) All diet soda pops in cans D) All ...
... Let U = {all soda pops}, A = {all diet soda pops}, B = {all cola soda pops}, C = {all soda pops in cans}, and D = {all caffeine-free soda pops}. Describe the set in words. 8) Aʹ ∩ C A) All diet soda pops and all soda pops in cans B) All non-diet soda pops in cans C) All diet soda pops in cans D) All ...
Maple : A Brief Introduction
... Maple V is a Symbolic Computation System or Computer Algebra System for mathematical computation symbolic, numeric and graphical. It does all the usual numerical operations to arbitrary precision. More importantly, it can manipulate symbolic expressions: polynomials can be factored, expanded and t ...
... Maple V is a Symbolic Computation System or Computer Algebra System for mathematical computation symbolic, numeric and graphical. It does all the usual numerical operations to arbitrary precision. More importantly, it can manipulate symbolic expressions: polynomials can be factored, expanded and t ...
Principia Mathematica

The Principia Mathematica is a three-volume work on the foundations of mathematics, written by Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. In 1927, it appeared in a second edition with an important Introduction To the Second Edition, an Appendix A that replaced ✸9 and an all-new Appendix C.PM, as it is often abbreviated, was an attempt to describe a set of axioms and inference rules in symbolic logic from which all mathematical truths could in principle be proven. As such, this ambitious project is of great importance in the history of mathematics and philosophy, being one of the foremost products of the belief that such an undertaking may be achievable. However, in 1931, Gödel's incompleteness theorem proved definitively that PM, and in fact any other attempt, could never achieve this lofty goal; that is, for any set of axioms and inference rules proposed to encapsulate mathematics, either the system must be inconsistent, or there must in fact be some truths of mathematics which could not be deduced from them.One of the main inspirations and motivations for PM was the earlier work of Gottlob Frege on logic, which Russell discovered allowed for the construction of paradoxical sets. PM sought to avoid this problem by ruling out the unrestricted creation of arbitrary sets. This was achieved by replacing the notion of a general set with the notion of a hierarchy of sets of different 'types', a set of a certain type only allowed to contain sets of strictly lower types. Contemporary mathematics, however, avoids paradoxes such as Russell's in less unwieldy ways, such as the system of Zermelo–Fraenkel set theory.PM is not to be confused with Russell's 1903 Principles of Mathematics. PM states: ""The present work was originally intended by us to be comprised in a second volume of Principles of Mathematics... But as we advanced, it became increasingly evident that the subject is a very much larger one than we had supposed; moreover on many fundamental questions which had been left obscure and doubtful in the former work, we have now arrived at what we believe to be satisfactory solutions.""The Modern Library placed it 23rd in a list of the top 100 English-language nonfiction books of the twentieth century.