• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Geometry Module - Rice University Math
Geometry Module - Rice University Math

Slide 1
Slide 1

Angle - tg313
Angle - tg313

Notes on Angle pairs
Notes on Angle pairs

Angle - ddetwiler
Angle - ddetwiler

... §3.5 Complementary and Supplementary Angles If the sum of the measure of two angles is 180, they form a special pair of angles called supplementary angles. Two angles are supplementary if and only if (iff) the sum of their degree measure is 180. ...
Shortlisted Problems with Solutions
Shortlisted Problems with Solutions

Angles
Angles

Chapter 10: Circle Geometry
Chapter 10: Circle Geometry

QUADRILATERALS AND PROOF 7.2.1 – 7.2.6 Example 1
QUADRILATERALS AND PROOF 7.2.1 – 7.2.6 Example 1

Elliptic Curves and The Congruent Number Problem
Elliptic Curves and The Congruent Number Problem

Triangle Centres
Triangle Centres

lecture6-tau
lecture6-tau

... Note that we do not need to change our program anywhere else. ‫מבוא מורחב‬ ...
1.6 Angle Pair Relationships
1.6 Angle Pair Relationships

Supplementary angles
Supplementary angles

CHAPTER 4
CHAPTER 4

PC_Geometry_Macomb_April08
PC_Geometry_Macomb_April08

Geometry Review and Answer Key
Geometry Review and Answer Key

“Ciencia Matemática”
“Ciencia Matemática”

Chapter 8: Quadrilaterals
Chapter 8: Quadrilaterals

End of Book - Mr. Hronek Westlake High
End of Book - Mr. Hronek Westlake High

Triangles
Triangles

Microsoft Word 97
Microsoft Word 97

ARCHITECTURE Classify each triangle
ARCHITECTURE Classify each triangle

2014-2015 MATH Instructional Curriculum Plan Grade: 6
2014-2015 MATH Instructional Curriculum Plan Grade: 6

Area - Miss B`s Resources
Area - Miss B`s Resources

... school hall. We need chocolate brownies for everyone but they come in packs of 6. How many packs do we need to buy? ...
< 1 ... 9 10 11 12 13 14 15 16 17 ... 604 >

Line (geometry)



The notion of line or straight line was introduced by ancient mathematicians to represent straight objects (i.e., having no curvature) with negligible width and depth. Lines are an idealization of such objects. Until the seventeenth century, lines were defined in this manner: ""The [straight or curved] line is the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which […] will leave from its imaginary moving some vestige in length, exempt of any width. […] The straight line is that which is equally extended between its points""Euclid described a line as ""breadthless length"" which ""lies equally with respect to the points on itself""; he introduced several postulates as basic unprovable properties from which he constructed the geometry, which is now called Euclidean geometry to avoid confusion with other geometries which have been introduced since the end of nineteenth century (such as non-Euclidean, projective and affine geometry).In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in analytic geometry, a line in the plane is often defined as the set of points whose coordinates satisfy a given linear equation, but in a more abstract setting, such as incidence geometry, a line may be an independent object, distinct from the set of points which lie on it.When a geometry is described by a set of axioms, the notion of a line is usually left undefined (a so-called primitive object). The properties of lines are then determined by the axioms which refer to them. One advantage to this approach is the flexibility it gives to users of the geometry. Thus in differential geometry a line may be interpreted as a geodesic (shortest path between points), while in some projective geometries a line is a 2-dimensional vector space (all linear combinations of two independent vectors). This flexibility also extends beyond mathematics and, for example, permits physicists to think of the path of a light ray as being a line.A line segment is a part of a line that is bounded by two distinct end points and contains every point on the line between its end points. Depending on how the line segment is defined, either of the two end points may or may not be part of the line segment. Two or more line segments may have some of the same relationships as lines, such as being parallel, intersecting, or skew, but unlike lines they may be none of these, if they are coplanar and either do not intersect or are collinear.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report