• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
19. Basis and Dimension
19. Basis and Dimension

Minimal spanning and maximal independent sets, Basis
Minimal spanning and maximal independent sets, Basis

CORE 4 Summary Notes
CORE 4 Summary Notes

CORE 4 Summary Notes
CORE 4 Summary Notes

Notes, pp 41-43
Notes, pp 41-43

... Setting s = 0 = t in (1) gives us a particular point (0, 0, 1) on the plane with position vector v0 . The whole plane is described by adding to v0 linear combinations of two fixed vectors p, q that are parallel to the plane. An abbreviated way of writing the set of elements in (1) (with s, t ∈ R) is ...
Mechanics 105 chapter 1
Mechanics 105 chapter 1

Ogasawara, M.; (1965)A necessary condition for the existence of regular and symmetrical PBIB designs of T_M type."
Ogasawara, M.; (1965)A necessary condition for the existence of regular and symmetrical PBIB designs of T_M type."

Review of Linear Independence Theorems
Review of Linear Independence Theorems

... The proof is written out in Practice Quiz D. Definition. A vector space V over a field F is finite-dimensional if it has a basis which has finitely many elements. If it is not finite-dimensional it is said to be infinite-dimensional . The dimension of a finite-dimensional vector space V is the numbe ...
Chapter 9 Lie Groups as Spin Groups
Chapter 9 Lie Groups as Spin Groups

ppt - Geometric Algebra
ppt - Geometric Algebra

Contents Definition of a Subspace of a Vector Space
Contents Definition of a Subspace of a Vector Space

CSCE 590E Spring 2007
CSCE 590E Spring 2007

Correlation of the ALEKS course PreCalculus to the Common Core
Correlation of the ALEKS course PreCalculus to the Common Core

Vectors and Scalars
Vectors and Scalars

Euclidean Space - Will Rosenbaum
Euclidean Space - Will Rosenbaum

14 CHAPTER 2. LINEAR MAPS Thus one way of shrinking a given
14 CHAPTER 2. LINEAR MAPS Thus one way of shrinking a given

Math 108A Practice Midterm 1 Solutions
Math 108A Practice Midterm 1 Solutions

Review Dimension of Col(A) and Nul(A) 1
Review Dimension of Col(A) and Nul(A) 1

Chapter 4: General Vector Spaces
Chapter 4: General Vector Spaces

... First we state what is meant by a general vector space in terms of a set of axioms. What does the term axiom mean? An axiom is a statement which is assumed to be true without proof. We define a vector space in terms of 10 axioms given below. A1 Vector Space Let V be a non-empty set of elements calle ...
Lecture 9: 3.2 Norm of a Vector
Lecture 9: 3.2 Norm of a Vector

... a specified nonzero vector a and the other perpendicular to a. We have w2 = u –w1 and w1 + w2 = w1 + (u –w1) = u The vector w1 is called the orthogonal projection (正交投影) of u on a or sometimes the vector component (分向量) of u along a, and denoted by projau The vector w2 is called the vector component ...
Chapter 6 General Linear Transformations
Chapter 6 General Linear Transformations

Math 416 Midterm 1. Solutions. Question 1, Version 1. Let us define
Math 416 Midterm 1. Solutions. Question 1, Version 1. Let us define

... Solution: We write this as an augmented matrix and then do row reductions. ...
A positive Bondi–type mass in asymptotically de Sitter spacetimes
A positive Bondi–type mass in asymptotically de Sitter spacetimes

Gordon Brown Spring 2016 Background Notes for Quiver
Gordon Brown Spring 2016 Background Notes for Quiver

Chapter 22. Subspaces, linear maps and the Kernel
Chapter 22. Subspaces, linear maps and the Kernel

< 1 ... 43 44 45 46 47 48 49 50 51 ... 75 >

Vector space



A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied (""scaled"") by numbers, called scalars in this context. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called axioms, listed below. Euclidean vectors are an example of a vector space. They represent physical quantities such as forces: any two forces (of the same type) can be added to yield a third, and the multiplication of a force vector by a real multiplier is another force vector. In the same vein, but in a more geometric sense, vectors representing displacements in the plane or in three-dimensional space also form vector spaces. Vectors in vector spaces do not necessarily have to be arrow-like objects as they appear in the mentioned examples: vectors are regarded as abstract mathematical objects with particular properties, which in some cases can be visualized as arrows.Vector spaces are the subject of linear algebra and are well understood from this point of view since vector spaces are characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. A vector space may be endowed with additional structure, such as a norm or inner product. Such spaces arise naturally in mathematical analysis, mainly in the guise of infinite-dimensional function spaces whose vectors are functions. Analytical problems call for the ability to decide whether a sequence of vectors converges to a given vector. This is accomplished by considering vector spaces with additional structure, mostly spaces endowed with a suitable topology, thus allowing the consideration of proximity and continuity issues. These topological vector spaces, in particular Banach spaces and Hilbert spaces, have a richer theory.Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors. The modern, more abstract treatment, first formulated by Giuseppe Peano in 1888, encompasses more general objects than Euclidean space, but much of the theory can be seen as an extension of classical geometric ideas like lines, planes and their higher-dimensional analogs.Today, vector spaces are applied throughout mathematics, science and engineering. They are the appropriate linear-algebraic notion to deal with systems of linear equations; offer a framework for Fourier expansion, which is employed in image compression routines; or provide an environment that can be used for solution techniques for partial differential equations. Furthermore, vector spaces furnish an abstract, coordinate-free way of dealing with geometrical and physical objects such as tensors. This in turn allows the examination of local properties of manifolds by linearization techniques. Vector spaces may be generalized in several ways, leading to more advanced notions in geometry and abstract algebra.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report