phys1444-lec4
... • Potential due to a ring of charge: A thin circular ring of radius R carries a uniformly distributed charge Q. Determine the electric potential at a point P on the axis of the ring a distance x from its center. • Each point on the ring is at the same distance from the point P. What is the distance? ...
... • Potential due to a ring of charge: A thin circular ring of radius R carries a uniformly distributed charge Q. Determine the electric potential at a point P on the axis of the ring a distance x from its center. • Each point on the ring is at the same distance from the point P. What is the distance? ...
Document
... CheckPoint: Forces on Two Charges Two charges q = + 1 μC and Q = +10 μC are placed near each other as shown in the figure below. Which of the following diagrams best depicts the forces acting on the charges: ...
... CheckPoint: Forces on Two Charges Two charges q = + 1 μC and Q = +10 μC are placed near each other as shown in the figure below. Which of the following diagrams best depicts the forces acting on the charges: ...
Magnetism
... • Magnetic north pole is different than geographical north pole. • There is about a 25 ̊difference from geographic north pole to magnetic north pole, this is called magnetic declination • In addition, the north pole of a magnet is attracted to earth’s north pole because that is the magnetic south po ...
... • Magnetic north pole is different than geographical north pole. • There is about a 25 ̊difference from geographic north pole to magnetic north pole, this is called magnetic declination • In addition, the north pole of a magnet is attracted to earth’s north pole because that is the magnetic south po ...
Document
... Quick Quiz 25.3 Answer: (c). Moving from B to C decreases the electric potential by 2 V, so the electric field performs 2 J of work on each coulomb of positive charge that moves. Moving from C to D decreases the electric potential by 1 V, so 1 J of work is done by the field. It takes no work to mov ...
... Quick Quiz 25.3 Answer: (c). Moving from B to C decreases the electric potential by 2 V, so the electric field performs 2 J of work on each coulomb of positive charge that moves. Moving from C to D decreases the electric potential by 1 V, so 1 J of work is done by the field. It takes no work to mov ...
Chapter 30
... 30.1 The Biot–Savart Law 30.2 The Magnetic Force Between Two Parallel Conductors 30.3 Ampère’s Law 30.4 The Magnetic Field of a Solenoid 30.5 Magnetic Flux 30.8 Magnetism in Matter 30.9 The Magnetic Field of the Earth 25 May 2017 ...
... 30.1 The Biot–Savart Law 30.2 The Magnetic Force Between Two Parallel Conductors 30.3 Ampère’s Law 30.4 The Magnetic Field of a Solenoid 30.5 Magnetic Flux 30.8 Magnetism in Matter 30.9 The Magnetic Field of the Earth 25 May 2017 ...
The Electromagnetic Radiation Mechanism
... CHARGED PARTICLES DYNAMICS TheCoulomb’slaw for magnitude ofelectric fieldaround point charge (Wolski, 2011) is given by ...
... CHARGED PARTICLES DYNAMICS TheCoulomb’slaw for magnitude ofelectric fieldaround point charge (Wolski, 2011) is given by ...