Mag & e-mag power point
... exerts a constant force over a region. Such a field will consist of parallel equally spaced magnetic field lines. This type of field can almost be found between a north and south magnetic pole. ...
... exerts a constant force over a region. Such a field will consist of parallel equally spaced magnetic field lines. This type of field can almost be found between a north and south magnetic pole. ...
Physics 231 Course Review, Part 1
... electric field at that point The “density” of electric field lines is proportional to the magnitude of the electric field at that point The direction of the electric field line give the direction of the force on a charge particle at that point. It does not necessarily represent the direction of moti ...
... electric field at that point The “density” of electric field lines is proportional to the magnitude of the electric field at that point The direction of the electric field line give the direction of the force on a charge particle at that point. It does not necessarily represent the direction of moti ...
Chapter 10
... only the direction of the beam. only the energy of the electrons. both the direction and the energy. neither the direction nor the energy. ...
... only the direction of the beam. only the energy of the electrons. both the direction and the energy. neither the direction nor the energy. ...
PPT - LSU Physics & Astronomy
... Initially unpolarized light of intensity I0 is sent into a system of three polarizers as shown. What fraction of the initial intensity emerges from the system? What is the polarization of the exiting light? • Through the first polarizer: unpolarized to polarized, so I1=½I0. • Into the second polariz ...
... Initially unpolarized light of intensity I0 is sent into a system of three polarizers as shown. What fraction of the initial intensity emerges from the system? What is the polarization of the exiting light? • Through the first polarizer: unpolarized to polarized, so I1=½I0. • Into the second polariz ...
Magnetic monopole
A magnetic monopole is a hypothetical elementary particle in particle physics that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). In more technical terms, a magnetic monopole would have a net ""magnetic charge"". Modern interest in the concept stems from particle theories, notably the grand unified and superstring theories, which predict their existence.Magnetism in bar magnets and electromagnets does not arise from magnetic monopoles. There is no conclusive experimental evidence that magnetic monopoles exist at all in our universe.Some condensed matter systems contain effective (non-isolated) magnetic monopole quasi-particles, or contain phenomena that are mathematically analogous to magnetic monopoles.