• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
physics - Career Point Kota
physics - Career Point Kota

... Characteristic properties of photons : (i) Energy of photon is directly proportional to the frequency (or inversely proportional to the wavelength). (ii) In photon-electron collision, total energy and momentum of the system of two constituents remains constant. (iii) In the interaction of photons wi ...
lorenz number
lorenz number

... So here something two orders of two magnitude too small (L) gets divided by something one order of magnitude too small (vrms), i.e. the result for electrical conductivity must be one order of magnitude too small, which is observed !! But L for particle is quite reasonable, so replace Vrms with Vferm ...
t - leonkag
t - leonkag

... From the Fundamental Theorem of Line Integrals, it is clear that if F is continuous and conservative in an open region R, the value of is the same for every piecewise smooth curve C from one fixed point in R to another fixed point in R and is equal to f(end) - f(start). This result is described by s ...
Orders / Phases of matter
Orders / Phases of matter

Power points I
Power points I

Lecture_11
Lecture_11

IA Simple Technique for Obtaining the Near Fields of
IA Simple Technique for Obtaining the Near Fields of

AP Physics Free Response Practice – Torque
AP Physics Free Response Practice – Torque

Chapters 8 and 9
Chapters 8 and 9

... Poisson’s equation tells us that ∇ · E = 4π (ρ0 + ρP ) , ...
Chapter 9 Quantum Mechanics
Chapter 9 Quantum Mechanics

electrostatics_wkbk
electrostatics_wkbk



... Dirac’s equation of a free electron. We distinguish our study from many others by focusing on the motion of the electric field ⊂B⊂M[2] that is responsible for revealing the point particle electron in [1] (cf. Demikhovskii et al., 2010) for a similarly motivated study), not the dynamics of an electro ...
Chapter 23 Magnetic Flux and Faraday`s Law of Induction
Chapter 23 Magnetic Flux and Faraday`s Law of Induction

1. Wave Packet and Heisenberg Uncertainty Relations En
1. Wave Packet and Heisenberg Uncertainty Relations En

Problems and solutions on Magnetism
Problems and solutions on Magnetism

arXiv:0911.1876 - Harvard University
arXiv:0911.1876 - Harvard University

ch22
ch22

Lecture 7: Electrostatics
Lecture 7: Electrostatics

Magnetic Circuit Model and the Calculation of
Magnetic Circuit Model and the Calculation of

Chapter 27
Chapter 27

... • The magnetic flux through the area enclosed by a circuit often varies with time because of time-varying currents in nearby circuits • This process is known as mutual induction because it depends on the interaction of two circuits • The current in coil 1 sets up a magnetic field • Some of the magne ...
PHY481: Electrostatics Semester plans Introductory E&M review (1) Lecture 1
PHY481: Electrostatics Semester plans Introductory E&M review (1) Lecture 1

... advanced mathematics, and solving problems with a large range of difficulty – Exams: ~50% at an Intro E&M level, ~50% with focus on advanced techniques. – I expect that you can, at a minimum, do the Intro problems! ...
The role of angular momentum conservation law in statistical
The role of angular momentum conservation law in statistical

Simple Radiating Systems
Simple Radiating Systems

4 Minute Drill - MrStapleton.com
4 Minute Drill - MrStapleton.com

... • Explain what happens to an electric force as you move farther from the source. • Define polarization. 18.3. Coulomb’s Law • State Coulomb’s law in terms of how the electrostatic force changes with the distance between two objects. • Calculate the electrostatic force between two charged point force ...
UNIT 1 : ELECTROSTATICS – LECTURE 5 ELECTRIC FLUX The
UNIT 1 : ELECTROSTATICS – LECTURE 5 ELECTRIC FLUX The

< 1 ... 319 320 321 322 323 324 325 326 327 ... 661 >

Aharonov–Bohm effect

The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum mechanical phenomenon in which an electrically charged particle is affected by an electromagnetic field (E, B), despite being confined to a region in which both the magnetic field B and electric field E are zero. The underlying mechanism is the coupling of the electromagnetic potential with the complex phase of a charged particle's wavefunction, and the Aharonov–Bohm effect is accordingly illustrated by interference experiments.The most commonly described case, sometimes called the Aharonov–Bohm solenoid effect, takes place when the wave function of a charged particle passing around a long solenoid experiences a phase shift as a result of the enclosed magnetic field, despite the magnetic field being negligible in the region through which the particle passes and the particle's wavefunction being negligible inside the solenoid. This phase shift has been observed experimentally. There are also magnetic Aharonov–Bohm effects on bound energies and scattering cross sections, but these cases have not been experimentally tested. An electric Aharonov–Bohm phenomenon was also predicted, in which a charged particle is affected by regions with different electrical potentials but zero electric field, but this has no experimental confirmation yet. A separate ""molecular"" Aharonov–Bohm effect was proposed for nuclear motion in multiply connected regions, but this has been argued to be a different kind of geometric phase as it is ""neither nonlocal nor topological"", depending only on local quantities along the nuclear path.Werner Ehrenberg and Raymond E. Siday first predicted the effect in 1949, and similar effects were later published by Yakir Aharonov and David Bohm in 1959. After publication of the 1959 paper, Bohm was informed of Ehrenberg and Siday's work, which was acknowledged and credited in Bohm and Aharonov's subsequent 1961 paper.Subsequently, the effect was confirmed experimentally by several authors; a general review can be found in Peshkin and Tonomura (1989).
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report