• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Chapter 7 – Energy and Energy Balances
Chapter 7 – Energy and Energy Balances

Gibbs Free Energy and the Chemical Potential
Gibbs Free Energy and the Chemical Potential

Spring 2016 - F-Chart Software
Spring 2016 - F-Chart Software

A Generalized Statement of Highest
A Generalized Statement of Highest

2 The Laws of Black Hole Thermodynamics
2 The Laws of Black Hole Thermodynamics

Temperature
Temperature

... Any macroscopic body composed of a large number of particles has internal energy U associated with internal degrees of freedom . (e.g kinetic energy of molecules in a volume of gas, vibrational energy of atoms in a crystal. The internal energy U(T) is in general a complicated function of T and is di ...
Heat Capacity. Enthalpy. Magnetic Systems.
Heat Capacity. Enthalpy. Magnetic Systems.

What you absolutely have to know about Thermodynamics to pass
What you absolutely have to know about Thermodynamics to pass

Econophysics: Entropy and its discontents?
Econophysics: Entropy and its discontents?

HNRS 227 Lecture #2 Chapters 2 and 3
HNRS 227 Lecture #2 Chapters 2 and 3

Chapter 2
Chapter 2

HNRS 227 Lecture #2 Chapters 2 and 3
HNRS 227 Lecture #2 Chapters 2 and 3

... Explain the meaning of the mechanical equivalent of heat. ...
ee11042602mpt3.mov 110426ph423main3.mov Example of the
ee11042602mpt3.mov 110426ph423main3.mov Example of the

Selection of Thermodynamic Methods
Selection of Thermodynamic Methods

Document
Document

Anomalous thermodynamic properties in ferropericlase throughout
Anomalous thermodynamic properties in ferropericlase throughout

Earth – The Water Planet
Earth – The Water Planet

Jeopardy Heat
Jeopardy Heat

... What is Heat? The form of energy that is transferred between two substances because they have different temperatures. ...
Beginning Research on the Quantification of Spatial Order
Beginning Research on the Quantification of Spatial Order

ENERGY CONSERVATION The Fisrt Law
ENERGY CONSERVATION The Fisrt Law

Chapter 2
Chapter 2

Meaning of Entropy in Classical Thermodynamics
Meaning of Entropy in Classical Thermodynamics

The Second Law of Thermodynamics
The Second Law of Thermodynamics

Lecture 2
Lecture 2

energy 2015 10 25
energy 2015 10 25

< 1 ... 15 16 17 18 19 20 21 22 23 ... 70 >

Thermodynamic system



A thermodynamic system is the content of a macroscopic volume in space, along with its walls and surroundings; it undergoes thermodynamic processes according to the principles of thermodynamics. A physical system qualifies as a thermodynamic system only if it can be adequately described by thermodynamic variables such as temperature, entropy, internal energy and pressure. The thermodynamic state of a thermodynamic system is its internal state as specified by its state variables. A thermodynamic account also requires a special kind of function called a state function. For example, if the state variables are internal energy, volume and mole amounts, the needed further state function is entropy. These quantities are inter-related by one or more functional relationships called equations of state. Thermodynamics defines the restrictions on the possible equations of state imposed by the laws of thermodynamics through that further function of state.The system is delimited by walls or boundaries, either actual or notional, across which conserved (such as matter and energy) or unconserved (such as entropy) quantities can pass into and out of the system. The space outside the thermodynamic system is known as the surroundings, a reservoir, or the environment. The properties of the walls determine what transfers can occur. A wall that allows transfer of a quantity is said to be permeable to it, and a thermodynamic system is classified by the permeabilities of its several walls. A transfer between system and surroundings can arise by contact, such as conduction of heat, or by long-range forces such as an electric field in the surroundings.A system with walls that prevent all transfers is said to be isolated. This is an idealized conception, because in practice some transfer is always possible, for example by gravitational forces. It is an axiom of thermodynamics that an isolated system eventually reaches internal thermodynamic equilibrium, when its state no longer changes with time. According to the permeabilities of its walls, a system that is not isolated can be in thermodynamic equilibrium with its surroundings, or else may be in a state that is constant or precisely cyclically changing in time - a steady state that is far from equilibrium. Classical thermodynamics considers only states of thermodynamic systems in equilibrium that are either constant or precisely cycling in time. The walls of a closed system allow transfer of energy as heat and as work, but not of matter, between it and its surroundings. The walls of an open system allow transfer both of matter and of energy. This scheme of definition of terms is not uniformly used, though it is convenient for some purposes. In particular, some writers use 'closed system' where 'isolated system' is here used.In 1824 Sadi Carnot described a thermodynamic system as the working substance (such as the volume of steam) of any heat engine under study. The very existence of such thermodynamic systems may be considered a fundamental postulate of equilibrium thermodynamics, though it is not listed as a numbered law. According to Bailyn, the commonly rehearsed statement of the zeroth law of thermodynamics is a consequence of this fundamental postulate.In equilibrium thermodynamics the state variables do not include fluxes because in a state of thermodynamic equilibrium all fluxes have zero values by definition. Equilibrium thermodynamic processes may of course involve fluxes but these must have ceased by the time a thermodynamic process or operation is complete bringing a system to its eventual thermodynamic state. Non-equilibrium thermodynamics allows its state variables to include non-zero fluxes, that describe transfers of matter or energy or entropy between a system and its surroundings.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report