
Product Code: HTC
... contact surfaces are placed together, a firm metal-to-metal contact will only be achieved on 40 – 60% of the interface, depending on the smoothness of the surfaces. This means that air, which has relatively poor thermal conductivity, will account for the balance of the interface. Only a small amount ...
... contact surfaces are placed together, a firm metal-to-metal contact will only be achieved on 40 – 60% of the interface, depending on the smoothness of the surfaces. This means that air, which has relatively poor thermal conductivity, will account for the balance of the interface. Only a small amount ...
HTC Heat Transfer Compound
... contact surfaces are placed together, a firm metal-to-metal contact will only be achieved on 40 – 60% of the interface, depending on the smoothness of the surfaces. This means that air, which has relatively poor thermal conductivity, will account for the balance of the interface. Only a small amount ...
... contact surfaces are placed together, a firm metal-to-metal contact will only be achieved on 40 – 60% of the interface, depending on the smoothness of the surfaces. This means that air, which has relatively poor thermal conductivity, will account for the balance of the interface. Only a small amount ...
specific heat
... Heat capacity of a body is the quantity of heat required to raise the temperature of the body by 1oC. The specific heat of a substance is the heat capacity per unit mass. Thus, heat capacity = mass x specific heat. The specific heat is essentially a measure of how thermally insensitive a substance i ...
... Heat capacity of a body is the quantity of heat required to raise the temperature of the body by 1oC. The specific heat of a substance is the heat capacity per unit mass. Thus, heat capacity = mass x specific heat. The specific heat is essentially a measure of how thermally insensitive a substance i ...
First Law of Thermodynamics 9.1 Heat and Work
... • A thermodynamic process is the transition between states with input or output of heat and work with changes in internal energy. • The internal energy U is a property of the state. ∆U determined by the initial and final state and is independent of path • The heat absorbed and work done in the proce ...
... • A thermodynamic process is the transition between states with input or output of heat and work with changes in internal energy. • The internal energy U is a property of the state. ∆U determined by the initial and final state and is independent of path • The heat absorbed and work done in the proce ...
PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter
... inside the refrigerator for the least expenditure of work |W| ⇒ coefficient of performance, K (higher K value, better the refrigerator) ...
... inside the refrigerator for the least expenditure of work |W| ⇒ coefficient of performance, K (higher K value, better the refrigerator) ...
Dynamic insulation

Dynamic insulation is a form of insulation where cool outside air flowing through the thermal insulation in the envelope of a building will pick up heat from the insulation fibres. Buildings can be designed to exploit this to reduce the transmission heat loss (U-value) and to provide pre-warmed, draft free air to interior spaces. This is known as dynamic insulation since the U-value is no longer constant for a given wall or roof construction but varies with the speed of the air flowing through the insulation (climate adaptive building shell). Dynamic insulation is different from breathing walls. The positive aspects of dynamic insulation need to be weighed against the more conventional approach to building design which is to create an airtight envelope and provide appropriate ventilation using either natural ventilation or mechanical ventilation with heat recovery. The air-tight approach to building envelope design, unlike dynamic insulation, results in a building envelope that provides a consistent performance in terms of heat loss and risk of interstitial condensation that is independent of wind speed and direction. Under certain wind conditions a dynamically insulated building can have a higher heat transmission loss than an air-tight building with the same thickness of insulation.