• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
SESG6018_2007
SESG6018_2007

Document
Document

Sections 6.3, 10.4, and Slope Field
Sections 6.3, 10.4, and Slope Field

Problem: Destroying the Environment
Problem: Destroying the Environment

Chapter 5 Physics 205 Solution of Home Work Problems
Chapter 5 Physics 205 Solution of Home Work Problems

... well (0 ≤ x ≤ L) and in the region beyond (x > L) that satisfy the appropriate boundary conditions at x = 0 and x = ∞. Enforce the proper matching conditions at x = L to find an equation for the allowed energies of this system. Are there conditions for which no solution is possible? Explain. ...
Additional Problems: Problem 1. K-means clustering. Given are the
Additional Problems: Problem 1. K-means clustering. Given are the

Screw, Fasteners and the Design of Nonpermanent Joint
Screw, Fasteners and the Design of Nonpermanent Joint

Math 7 Standards
Math 7 Standards

12:2: Applications of Maxima and Minima
12:2: Applications of Maxima and Minima

x ∈ T, t ∈ [0, T], / / 1 - tanh(x
x ∈ T, t ∈ [0, T], / / 1 - tanh(x

GA_PPTX_Rabia
GA_PPTX_Rabia

MS COMPREHENSIVE EXAM DIFFERENTIAL EQUATIONS SPRING 2007
MS COMPREHENSIVE EXAM DIFFERENTIAL EQUATIONS SPRING 2007

MATH-UA 123 Calculus III Part1
MATH-UA 123 Calculus III Part1

... (a) Find the unit normal vector as a function of t. (b) Find the curvature as a function of t. (c) Find the unit binormal vector at t = 0. 4. (10 points) Answer “true” or “false.” No justification is needed. No work needs to be shown for this problem. (a) If there is a direction u such that Du f (x∗ ...
Simulated Annealing
Simulated Annealing

Simulated Annealing
Simulated Annealing

Muthuvel
Muthuvel

EXAM1
EXAM1

lecture #6
lecture #6

S. Louridas and M. Rassias: Problem-Solving and
S. Louridas and M. Rassias: Problem-Solving and

Bilevel programming, pricing problems and Stackelberg games
Bilevel programming, pricing problems and Stackelberg games

... A bilevel optimization problem consists in an optimization problem in which some of the constraints specify that a subset of variables must be an optimal solution to another optimization problem. This paradigm is particularly appropriate to model competition between agents, a leader and a follower, ...
Data Representation Methods
Data Representation Methods

... • The class includes thousands of real-world problems. • Highly unlikely that any NP-hard problem can be solved by a polynomial time algorithm. ...
Homework # 1 Solutions Problem 11, p. 4 Solve z 2 + z +1=0. Strictly
Homework # 1 Solutions Problem 11, p. 4 Solve z 2 + z +1=0. Strictly

PDF
PDF

Hints about Exam 2.
Hints about Exam 2.

Introducing a New Product
Introducing a New Product

< 1 ... 48 49 50 51 52 53 >

Multiple-criteria decision analysis



Multiple-criteria decision-making or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly considers multiple criteria in decision-making environments. Whether in our daily lives or in professional settings, there are typically multiple conflicting criteria that need to be evaluated in making decisions. Cost or price is usually one of the main criteria. Some measure of quality is typically another criterion that is in conflict with the cost. In purchasing a car, cost, comfort, safety, and fuel economy may be some of the main criteria we consider. It is unusual that the cheapest car is the most comfortable and the safest one. In portfolio management, we are interested in getting high returns but at the same time reducing our risks. Again, the stocks that have the potential of bringing high returns typically also carry high risks of losing money. In a service industry, customer satisfaction and the cost of providing service are two conflicting criteria that would be useful to consider.In our daily lives, we usually weigh multiple criteria implicitly and we may be comfortable with the consequences of such decisions that are made based on only intuition. On the other hand, when stakes are high, it is important to properly structure the problem and explicitly evaluate multiple criteria. In making the decision of whether to build a nuclear power plant or not, and where to build it, there are not only very complex issues involving multiple criteria, but there are also multiple parties who are deeply affected from the consequences.Structuring complex problems well and considering multiple criteria explicitly leads to more informed and better decisions. There have been important advances in this field since the start of the modern multiple-criteria decision-making discipline in the early 1960s. A variety of approaches and methods, many implemented by specialized decision-making software, have been developed for their application in an array of disciplines, ranging from politics and business to the environment and energy.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report