• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
950 matematik - Portal Rasmi Majlis Peperiksaan Malaysia
950 matematik - Portal Rasmi Majlis Peperiksaan Malaysia

Fundamental Counting Principle (the multiplication principle)
Fundamental Counting Principle (the multiplication principle)

Number Operations and Relationships
Number Operations and Relationships

... 8) Demonstrate basic understanding of proportionality in proportional contexts. 9) Read, write, identify, order, and compare mixed fractions. 10) Represent fractions using numbers, pictures, and number lines. 11) Rename improper fractions to mixed numbers in lowest terms. 12) Identify and represent ...
B. Number Operations and Relationships Grade 5
B. Number Operations and Relationships Grade 5

10-4-10 - NISPLAN
10-4-10 - NISPLAN

UbD (Understanding by Design) Lesson Plan
UbD (Understanding by Design) Lesson Plan

... a. Build new mathematical knowledge through problem solving. b. Solve problems that arise in mathematics and in other contexts. c. Apply and adapt a variety of appropriate strategies to solve problems. d. Monitor and reflect on the process of mathematical problem solving. M7P2. Students will reason ...
Fostering & Sustaining Math`l Th`g Leicester
Fostering & Sustaining Math`l Th`g Leicester

Algebra
Algebra

Chapter 3: Exponents and Polynomials
Chapter 3: Exponents and Polynomials

ONTOLOGY OF MIRROR SYMMETRY IN LOGIC AND SET THEORY
ONTOLOGY OF MIRROR SYMMETRY IN LOGIC AND SET THEORY

Unit One Organizer: “Dealing with Data”
Unit One Organizer: “Dealing with Data”

MAT_GR6_U7_BLM_Final
MAT_GR6_U7_BLM_Final

+ –
+ –

Open Day Presentation
Open Day Presentation

Mathematics O Level: Secondary 1
Mathematics O Level: Secondary 1

Integers and division
Integers and division

Chapter 8: Roots and Radicals
Chapter 8: Roots and Radicals

... difference of terms in a denominator, rather than a single radical. ...
Chapter 8: Roots and Radicals
Chapter 8: Roots and Radicals

AQA Higher Module 2
AQA Higher Module 2

Lecture 5: random number generators
Lecture 5: random number generators

Idiosynchromatic Poetry
Idiosynchromatic Poetry

Sail into Summer with Math!  For Students Entering Algebra 1
Sail into Summer with Math! For Students Entering Algebra 1

A SIMPLE RULE TO DISTINGUISH PRIME FROM COMPOSITE
A SIMPLE RULE TO DISTINGUISH PRIME FROM COMPOSITE

CBSE X Mathematics 2012 Solution (SET 1)
CBSE X Mathematics 2012 Solution (SET 1)

1 - CAIU
1 - CAIU

< 1 ... 8 9 10 11 12 13 14 15 16 ... 23 >

Mathematics



Mathematics (from Greek μάθημα máthēma, “knowledge, study, learning”) is the study of topics such as quantity (numbers), structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope and definition of mathematics.Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof. When mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, and the systematic study of the shapes and motions of physical objects. Practical mathematics has been a human activity for as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry.Rigorous arguments first appeared in Greek mathematics, most notably in Euclid's Elements. Since the pioneering work of Giuseppe Peano (1858–1932), David Hilbert (1862–1943), and others on axiomatic systems in the late 19th century, it has become customary to view mathematical research as establishing truth by rigorous deduction from appropriately chosen axioms and definitions. Mathematics developed at a relatively slow pace until the Renaissance, when mathematical innovations interacting with new scientific discoveries led to a rapid increase in the rate of mathematical discovery that has continued to the present day.Galileo Galilei (1564–1642) said, ""The universe cannot be read until we have learned the language and become familiar with the characters in which it is written. It is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth."" Carl Friedrich Gauss (1777–1855) referred to mathematics as ""the Queen of the Sciences"". Benjamin Peirce (1809–1880) called mathematics ""the science that draws necessary conclusions"". David Hilbert said of mathematics: ""We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules. Rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise."" Albert Einstein (1879–1955) stated that ""as far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality."" French mathematician Claire Voisin states ""There is creative drive in mathematics, it's all about movement trying to express itself."" Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries, which has led to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report