
matheu - Matematica e Informatica
... Problem 4. A 5 х 5 square is divided into 25 unit squares, which are coloured in blue or red. Prove that there exist 4 monochromatic unit squares which lie in the intersection of 2 rows and 2 columns of the initial square. Solution: Firstly consider the unit squares of a column as drawers. It follo ...
... Problem 4. A 5 х 5 square is divided into 25 unit squares, which are coloured in blue or red. Prove that there exist 4 monochromatic unit squares which lie in the intersection of 2 rows and 2 columns of the initial square. Solution: Firstly consider the unit squares of a column as drawers. It follo ...
29(2)
... opus; and (5) the letter to Master Theodorus, the shortest of his extant writings. This useful letter has been somewhat neglected by historians of mathematics, a tendency I would like to see reversed. To understand Fibonacci's outstanding contributions to knowledge, it is necessary to know something ...
... opus; and (5) the letter to Master Theodorus, the shortest of his extant writings. This useful letter has been somewhat neglected by historians of mathematics, a tendency I would like to see reversed. To understand Fibonacci's outstanding contributions to knowledge, it is necessary to know something ...
Answer
... Quiz scores The quiz scores for a math class are 8, 7, 6, 10, 8, 8, 9, 8, 7, 9, 8, 0, and 10. Identify an extreme value and describe how it affects the mean. The data value 0 appears to be an extreme value. Calculate the mean with and without the extreme value to find how it affects the mean. ...
... Quiz scores The quiz scores for a math class are 8, 7, 6, 10, 8, 8, 9, 8, 7, 9, 8, 0, and 10. Identify an extreme value and describe how it affects the mean. The data value 0 appears to be an extreme value. Calculate the mean with and without the extreme value to find how it affects the mean. ...
39(2)
... such that x^+t is a square of an integer whenever i&j. These /J-sets are said to verify Diophantus' property. In fact, Diophantus was the first to note that the product of any two elements of the set {^, f§, *%-, ^ } increased by 1 is a square of a rational number. We now introduce a more general de ...
... such that x^+t is a square of an integer whenever i&j. These /J-sets are said to verify Diophantus' property. In fact, Diophantus was the first to note that the product of any two elements of the set {^, f§, *%-, ^ } increased by 1 is a square of a rational number. We now introduce a more general de ...
20(2)
... where Nl9 N2, N$9 N^ are even integers and min-Oi, N2, N39 N^} _> 4. If N1 = N2 = N3 = Ni+9 we can see below that statement (7) of the theorem is true in this case. If all four are not equal, by Lemma 1 it is clearly seen that the greatest integer (if two or three are equal and greater than the rema ...
... where Nl9 N2, N$9 N^ are even integers and min-Oi, N2, N39 N^} _> 4. If N1 = N2 = N3 = Ni+9 we can see below that statement (7) of the theorem is true in this case. If all four are not equal, by Lemma 1 it is clearly seen that the greatest integer (if two or three are equal and greater than the rema ...
Elementary mathematics
Elementary mathematics consists of mathematics topics frequently taught at the primary or secondary school levels. The most basic topics in elementary mathematics are arithmetic and geometry. Beginning in the last decades of the 20th century, there has been an increased emphasis on problem solving. Elementary mathematics is used in everyday life in such activities as making change, cooking, buying and selling stock, and gambling. It is also an essential first step on the path to understanding science.In secondary school, the main topics in elementary mathematics are algebra and trigonometry. Calculus, even though it is often taught to advanced secondary school students, is usually considered college level mathematics.