• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Integers and Rational Number
Integers and Rational Number

Extended Euclidean Algorithm
Extended Euclidean Algorithm

Introducing Integers-interactive.notebook
Introducing Integers-interactive.notebook

Recursive Algorithm (4.4)
Recursive Algorithm (4.4)

Notes for Recitation 3 1 Well-Ordering
Notes for Recitation 3 1 Well-Ordering

Extra Examples Section 2.3—Functions — Page references
Extra Examples Section 2.3—Functions — Page references

Unit 3 BENCHMARK BLUEPRINT Grade 4
Unit 3 BENCHMARK BLUEPRINT Grade 4

Full text
Full text

Chapter 1
Chapter 1

Chapter 6: Rational Number Operations and Properties
Chapter 6: Rational Number Operations and Properties

Inductive Reasoning is the process of arriving at a general
Inductive Reasoning is the process of arriving at a general

Chapter 1
Chapter 1

... 6.1.3.1.2. Proper fraction: when the numerator of the fraction is less than the denominator of the fraction and both the numerator and the denominator are integers 6.1.3.1.3. Improper fraction: when the numerator of the fraction is greater than the denominator of the fraction (fractions with non-int ...
Arithmetic Series - Henry County Schools
Arithmetic Series - Henry County Schools

Section 1.1 Notes
Section 1.1 Notes

Unit 3 – Page 2
Unit 3 – Page 2

§6 Integers Modulo n
§6 Integers Modulo n

Step 1
Step 1

Week 1: Logic Lecture 1, 8/21 (Sections 1.1 and 1.3)
Week 1: Logic Lecture 1, 8/21 (Sections 1.1 and 1.3)

B4 Identifying and represetning negative
B4 Identifying and represetning negative

Notes on Arithmetic Series Part I
Notes on Arithmetic Series Part I

What is Number Theory?? - Clayton State University
What is Number Theory?? - Clayton State University

Full text
Full text

Math chapter2
Math chapter2

... Example 2.3 When we use a computer or a calculator, r and q are negative when a is negative. How can we apply the restriction that r needs to be positive? The solution is simple, we decrement the value of q by 1 and we add the value of n to r to make it positive. ...
Solutions
Solutions

Perform Math in your Head
Perform Math in your Head

< 1 ... 87 88 89 90 91 92 93 94 95 ... 190 >

Collatz conjecture



The Collatz conjecture is a conjecture in mathematics named after Lothar Collatz, who first proposed it in 1937. The conjecture is also known as the 3n + 1 conjecture, the Ulam conjecture (after Stanisław Ulam), Kakutani's problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir Bryan Thwaites), Hasse's algorithm (after Helmut Hasse), or the Syracuse problem; the sequence of numbers involved is referred to as the hailstone sequence or hailstone numbers (because the values are usually subject to multiple descents and ascents like hailstones in a cloud), or as wondrous numbers.Take any natural number n. If n is even, divide it by 2 to get n / 2. If n is odd, multiply it by 3 and add 1 to obtain 3n + 1. Repeat the process (which has been called ""Half Or Triple Plus One"", or HOTPO) indefinitely. The conjecture is that no matter what number you start with, you will always eventually reach 1. The property has also been called oneness.Paul Erdős said about the Collatz conjecture: ""Mathematics may not be ready for such problems."" He also offered $500 for its solution.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report