• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Unit 2
Unit 2

SOME IRRATIONAL NUMBERS Proposition 1. The square root of 2
SOME IRRATIONAL NUMBERS Proposition 1. The square root of 2

Mathematical Statements and Their Proofs
Mathematical Statements and Their Proofs

Short History of numbers
Short History of numbers

Strand 1: Number and Operations
Strand 1: Number and Operations

2009 IM 1 Sem2 Review
2009 IM 1 Sem2 Review

UbD (Understanding by Design) Lesson Plan
UbD (Understanding by Design) Lesson Plan

Powerpoint
Powerpoint

Blueprint Math  - Dynamic Learning Maps
Blueprint Math - Dynamic Learning Maps

DLM Mathematics Year-End Assessment Model 2014-15 Blueprint
DLM Mathematics Year-End Assessment Model 2014-15 Blueprint

MEYL624 TUTOR NOTES Module 2
MEYL624 TUTOR NOTES Module 2

5: Dividing Whole Numbers by Fractions
5: Dividing Whole Numbers by Fractions

BEAUTIFUL THEOREMS OF GEOMETRY AS VAN AUBEL`S
BEAUTIFUL THEOREMS OF GEOMETRY AS VAN AUBEL`S

... two line segments remain perpendicular and retain an equal length. When I came across this geometry problem it struck me as novel, because it’s not often presented in Japan. I therefore delved into its roots. It is introduced in the 1971 edition of the ‘ Comprehensive Dictionary of Geometry, Volume ...
ELEMENTARY NUMBER THEORY
ELEMENTARY NUMBER THEORY

2004 - CEMC - University of Waterloo
2004 - CEMC - University of Waterloo

Candidate Name Centre Number Candidate Number 0
Candidate Name Centre Number Candidate Number 0

Chapter 2: Measurements and Calculations
Chapter 2: Measurements and Calculations

Chapter 1 Linear Equations and Graphs
Chapter 1 Linear Equations and Graphs

Grand Canyon Preparatory Academy Pre
Grand Canyon Preparatory Academy Pre

... expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. 7.EE.3. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools ...
Frege`s Foundations of Arithmetic
Frege`s Foundations of Arithmetic

Review 2 Multiplying Rational Numbers Review
Review 2 Multiplying Rational Numbers Review

A1 Decimals and Fractions Introduction
A1 Decimals and Fractions Introduction

Precalculus CST Released Items
Precalculus CST Released Items

Set Theory
Set Theory

... •  No exams in the course •  Exercises will be provided for self assessment •  In case of doubts contact the instructor after the class •  Personal meetings can be reserved on any day between 15:00 to 17:00 hours (Office: Wing 4-G) •  Please use email ([email protected]) only for queries about ...
printable version
printable version

< 1 ... 44 45 46 47 48 49 50 51 52 ... 65 >

History of mathematics



The area of study known as the history of mathematics is primarily an investigation into the origin of discoveries in mathematics and, to a lesser extent, an investigation into the mathematical methods and notation of the past.Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. The most ancient mathematical texts available are Plimpton 322 (Babylonian mathematics c. 1900 BC), the Rhind Mathematical Papyrus (Egyptian mathematics c. 2000-1800 BC) and the Moscow Mathematical Papyrus (Egyptian mathematics c. 1890 BC). All of these texts concern the so-called Pythagorean theorem, which seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry.The study of mathematics as a subject in its own right begins in the 6th century BC with the Pythagoreans, who coined the term ""mathematics"" from the ancient Greek μάθημα (mathema), meaning ""subject of instruction"". Greek mathematics greatly refined the methods (especially through the introduction of deductive reasoning and mathematical rigor in proofs) and expanded the subject matter of mathematics. Chinese mathematics made early contributions, including a place value system. The Hindu-Arabic numeral system and the rules for the use of its operations, in use throughout the world today, likely evolved over the course of the first millennium AD in India and were transmitted to the west via Islamic mathematics through the work of Muḥammad ibn Mūsā al-Khwārizmī. Islamic mathematics, in turn, developed and expanded the mathematics known to these civilizations. Many Greek and Arabic texts on mathematics were then translated into Latin, which led to further development of mathematics in medieval Europe.From ancient times through the Middle Ages, bursts of mathematical creativity were often followed by centuries of stagnation. Beginning in Renaissance Italy in the 16th century, new mathematical developments, interacting with new scientific discoveries, were made at an increasing pace that continues through the present day.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report