• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
THE BINOMIAL THEOREM FOR HYPERCOMPLEX NUMBERS
THE BINOMIAL THEOREM FOR HYPERCOMPLEX NUMBERS

ppt slides
ppt slides

ON ABUNDANT-LIKE NUMBERS
ON ABUNDANT-LIKE NUMBERS

On distribution of arithmetical functions on the set prime plus one
On distribution of arithmetical functions on the set prime plus one

Sampling and Reconstruction
Sampling and Reconstruction

Lecture VII--InferenceInBayesianNet
Lecture VII--InferenceInBayesianNet

Lesson 11
Lesson 11

Math 116 – Study Guide for Chapter 1
Math 116 – Study Guide for Chapter 1

Full text
Full text

Important Theorems for Algebra II and/or Pre
Important Theorems for Algebra II and/or Pre

... Important Theorems for Algebra II and/or Pre-Calculus State the following theorems and provide an illustration of each theorem. Do each theorem and an illustration/example on exactly one side of a sheet of notebook paper. You may use both the front side and backside of the notebook paper, but only o ...
Digital Transmission - Computing Science
Digital Transmission - Computing Science

notes 1_4 continuity and one
notes 1_4 continuity and one

CP Algebra 2 Polynomials Review, Connecting the Big Ideas
CP Algebra 2 Polynomials Review, Connecting the Big Ideas

Contents
Contents

The Intermediate Value Theorem
The Intermediate Value Theorem

Sperner`s Lemma and its application
Sperner`s Lemma and its application

IOSR Journal of Mathematics (IOSR-JM)
IOSR Journal of Mathematics (IOSR-JM)

A NOTE ON STOCHASTIC APPROXIMATION 404
A NOTE ON STOCHASTIC APPROXIMATION 404

Midterm #3: practice
Midterm #3: practice

6.5 Determining the sample size | ]
6.5 Determining the sample size | ]

Document
Document

Full text
Full text

Nominal Scale of Measurement
Nominal Scale of Measurement

PDF
PDF

Idiosynchromatic Poetry
Idiosynchromatic Poetry

... Ramsey theory is generally concerned with problems of finding structures with some kind of homogeneity in superstructures. Often a structure contains an homogeneous substructure of a certain sort if it is itself large enough. In some contexts the notion of size can not only be interpreted as cardina ...
< 1 ... 17 18 19 20 21 22 23 24 25 >

Nyquist–Shannon sampling theorem



In the field of digital signal processing, the sampling theorem is a fundamental bridge between continuous-time signals (often called ""analog signals"") and discrete-time signals (often called ""digital signals""). It establishes a sufficient condition for a sample rate that permits a discrete sequence of samples to capture all the information from a continuous-time signal of finite bandwidth.Strictly speaking, the theorem only applies to a class of mathematical functions having a Fourier transform that is zero outside of a finite region of frequencies (see Fig 1). Intuitively we expect that when one reduces a continuous function to a discrete sequence and interpolates back to a continuous function, the fidelity of the result depends on the density (or sample rate) of the original samples. The sampling theorem introduces the concept of a sample rate that is sufficient for perfect fidelity for the class of functions that are bandlimited to a given bandwidth, such that no actual information is lost in the sampling process. It expresses the sufficient sample rate in terms of the bandwidth for the class of functions. The theorem also leads to a formula for perfectly reconstructing the original continuous-time function from the samples.Perfect reconstruction may still be possible when the sample-rate criterion is not satisfied, provided other constraints on the signal are known. (See § Sampling of non-baseband signals below, and Compressed sensing.)In some cases (when the sample-rate criterion is not satisfied), utilizing additional constraints allows for approximate reconstructions. The fidelity of these reconstructions can be verified and quantified utilizing Bochner's theorem.The name Nyquist–Shannon sampling theorem honors Harry Nyquist and Claude Shannon. The theorem was also discovered independently by E. T. Whittaker, by Vladimir Kotelnikov, and by others. It is thus also known by the names Nyquist–Shannon–Kotelnikov, Whittaker–Shannon–Kotelnikov, Whittaker–Nyquist–Kotelnikov–Shannon, and cardinal theorem of interpolation.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report