• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
GEOMETRY JOURNAL CHAPTER 6: THE MOVIE
GEOMETRY JOURNAL CHAPTER 6: THE MOVIE

... Safety symbol: all Copyrights to CW productions. ...
THE INSOLUBILITY OF CLASSES OF DIOPHANTINE EQUATIONS
THE INSOLUBILITY OF CLASSES OF DIOPHANTINE EQUATIONS

1 - UCSD Mathematics
1 - UCSD Mathematics

material - Department of Computer Science
material - Department of Computer Science

... to try again. The notes have been designed this way on purpose. If you happen to get a hard problem with the bare minimum of tools, you will have accomplished much. As you go along, you will see your ideas appearing again later in other problems. On the other hand, if you don’t get the problem the fi ...
5 Similar Triangles
5 Similar Triangles

THE ARITHMETIC LARGE SIEVE WITH AN APPLICATION TO THE
THE ARITHMETIC LARGE SIEVE WITH AN APPLICATION TO THE

... which up to the po (1) factor is the best known result today. Conjecturally, Ankeny showed that GRH gives an even better estimate than Vinogradov conjectured, showing GRH implies np  (log p)2 . We will prove a result of Linnik which shows that Vinogradov’s conjecture holds for all but very few prim ...
Algorithmic Number Theory
Algorithmic Number Theory

3.5LB = 2750 LB ≈ 785.7 mm LB ≈ 35.7 in.
3.5LB = 2750 LB ≈ 785.7 mm LB ≈ 35.7 in.

Midpoints and Exact Points of Some Algebraic
Midpoints and Exact Points of Some Algebraic

Representations on Hessenberg Varieties and Young`s Rule
Representations on Hessenberg Varieties and Young`s Rule

... Our goal is to study Hessenberg varieties via a representation of the symmetric group on the (ordinary and equivariant) cohomology with complex coefficients. Among the results we prove is that when the Hessenberg variety has multiple connected components the representation is a permutation represent ...
Representations on Hessenberg Varieties and Young`s Rule
Representations on Hessenberg Varieties and Young`s Rule

Geometry Notes - Unit 4 Congruence
Geometry Notes - Unit 4 Congruence

Lesson 4.1 Classifying Triangles
Lesson 4.1 Classifying Triangles

Name
Name

... EFGH is a parallelogram. E (-5, -3), F (-2, 6), G (2 , 7), H (-1 , -2) Use the slope formula to find slope of: ...
Document
Document

congruent-triangles
congruent-triangles

Polygons and Quadrilaterals
Polygons and Quadrilaterals

4 . 2 Transversals and Parallel Lines
4 . 2 Transversals and Parallel Lines

... ∠3 and ∠6 are         . When angles are supplementary, the sum of their measures is     . You can write this as m∠3 + m∠6 = 180°. When you look at the given diagram, you see that ∠5 and ∠6 form a line, and so they are a      , which makes them         . You can write this as m∠5 + m∠6 = 1 ...
IMO 2006 Shortlisted Problems - International Mathematical Olympiad
IMO 2006 Shortlisted Problems - International Mathematical Olympiad

6.1 Polygons - Teacher Notes
6.1 Polygons - Teacher Notes

congruent triangles
congruent triangles

Math 2 Geometry Based on Elementary Geometry, 3rd ed, by
Math 2 Geometry Based on Elementary Geometry, 3rd ed, by

SSS, SAS
SSS, SAS

SOME ASYMPTOTIC FORMULAS IN THE THEORY OF NUMBERS(`)
SOME ASYMPTOTIC FORMULAS IN THE THEORY OF NUMBERS(`)

On the digital representation of integers with bounded prime factors
On the digital representation of integers with bounded prime factors

< 1 ... 10 11 12 13 14 15 16 17 18 ... 153 >

Four color theorem



In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color. Two regions are called adjacent if they share a common boundary that is not a corner, where corners are the points shared by three or more regions. For example, in the map of the United States of America, Utah and Arizona are adjacent, but Utah and New Mexico, which only share a point that also belongs to Arizona and Colorado, are not.Despite the motivation from coloring political maps of countries, the theorem is not of particular interest to mapmakers. According to an article by the math historian Kenneth May (Wilson 2014, 2), “Maps utilizing only four colors are rare, and those that do usually require only three. Books on cartography and the history of mapmaking do not mention the four-color property.”Three colors are adequate for simpler maps, but an additional fourth color is required for some maps, such as a map in which one region is surrounded by an odd number of other regions that touch each other in a cycle. The five color theorem, which has a short elementary proof, states that five colors suffice to color a map and was proven in the late 19th century (Heawood 1890); however, proving that four colors suffice turned out to be significantly harder. A number of false proofs and false counterexamples have appeared since the first statement of the four color theorem in 1852.The four color theorem was proven in 1976 by Kenneth Appel and Wolfgang Haken. It was the first major theorem to be proved using a computer. Appel and Haken's approach started by showing that there is a particular set of 1,936 maps, each of which cannot be part of a smallest-sized counterexample to the four color theorem. (If they did appear, you could make a smaller counter-example.) Appel and Haken used a special-purpose computer program to confirm that each of these maps had this property. Additionally, any map that could potentially be a counterexample must have a portion that looks like one of these 1,936 maps. Showing this required hundreds of pages of hand analysis. Appel and Haken concluded that no smallest counterexamples exist because any must contain, yet do not contain, one of these 1,936 maps. This contradiction means there are no counterexamples at all and that the theorem is therefore true. Initially, their proof was not accepted by all mathematicians because the computer-assisted proof was infeasible for a human to check by hand (Swart 1980). Since then the proof has gained wider acceptance, although doubts remain (Wilson 2014, 216–222).To dispel remaining doubt about the Appel–Haken proof, a simpler proof using the same ideas and still relying on computers was published in 1997 by Robertson, Sanders, Seymour, and Thomas. Additionally in 2005, the theorem was proven by Georges Gonthier with general purpose theorem proving software.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report