Powerpoint Slides
... The direction of propagation and the directions of the electric and magnetic fields in an electromagnetic wave can be determined using a right-hand rule: Point the fingers of your right hand in the direction of E, curl your fingers toward B, and your thumb will point in the direction of propagation. ...
... The direction of propagation and the directions of the electric and magnetic fields in an electromagnetic wave can be determined using a right-hand rule: Point the fingers of your right hand in the direction of E, curl your fingers toward B, and your thumb will point in the direction of propagation. ...
File
... E) none because short wavelength is associated with low energy and low frequency, not high energy and high frequency ...
... E) none because short wavelength is associated with low energy and low frequency, not high energy and high frequency ...
Electromagnetism
... Relate Electric and Magnetic fields generated by charge and current distributions. E = electric field D = electric displacement ...
... Relate Electric and Magnetic fields generated by charge and current distributions. E = electric field D = electric displacement ...
Secondary_4
... Sc 4.1.11 Describe the process of charging by rubbing; Sc 4.1.12 Explain the process of charging as transfer of electrons; Sc 4.1.13 Classify charges into positive and negative; Sc 4.1.14 Analyse the attraction and repulsion between different charges; Sc 4.1.15 Define electroscope; Sc 4.1.16 Make an ...
... Sc 4.1.11 Describe the process of charging by rubbing; Sc 4.1.12 Explain the process of charging as transfer of electrons; Sc 4.1.13 Classify charges into positive and negative; Sc 4.1.14 Analyse the attraction and repulsion between different charges; Sc 4.1.15 Define electroscope; Sc 4.1.16 Make an ...
Longitudinal vs. Transverse waves Vector fields
... Waves using complex vector amplitudes We must now allow the complex field E and its amplitude E0 to be ...
... Waves using complex vector amplitudes We must now allow the complex field E and its amplitude E0 to be ...
Syllabus - Mahidol University International College
... 2. Students should be able to solve basic problems using fundamental equations developed in the areas listed above. 3. Students should be able to apply fundamental principles of these fields of study to new situations. Course Outline Week Topic Hour 1 Systems and surrounding, temperature and ...
... 2. Students should be able to solve basic problems using fundamental equations developed in the areas listed above. 3. Students should be able to apply fundamental principles of these fields of study to new situations. Course Outline Week Topic Hour 1 Systems and surrounding, temperature and ...
Section 34 - University of Colorado Colorado Springs
... a fixed, frictionless, horizontal hinge at a point on its circumference. A horizontal beam of electromagnetic radiation with intensity 10.0 MW/m2 is incident on the disk in a direction perpendicular to its surface. The disk is perfectly absorbing, and the resulting radiation pressure makes the disk ...
... a fixed, frictionless, horizontal hinge at a point on its circumference. A horizontal beam of electromagnetic radiation with intensity 10.0 MW/m2 is incident on the disk in a direction perpendicular to its surface. The disk is perfectly absorbing, and the resulting radiation pressure makes the disk ...
Oscillatory Motion and Wave Propagation
... • At the top of its swing, the pendulum has maximum gravitational potential energy and minimum kinetic energy • At the bottom of its swing, the pendulum has maximum kinetic energy and minimum gravitational Energy constantly converted potential energy between gravitational potential energy and kineti ...
... • At the top of its swing, the pendulum has maximum gravitational potential energy and minimum kinetic energy • At the bottom of its swing, the pendulum has maximum kinetic energy and minimum gravitational Energy constantly converted potential energy between gravitational potential energy and kineti ...
Electromagnetic radiation
Electromagnetic radiation (EM radiation or EMR) is the radiant energy released by certain electromagnetic processes. Visible light is one type of electromagnetic radiation, other familiar forms are invisible electromagnetic radiations such as radio waves, infrared light and X rays.Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields that propagate at the speed of light through a vacuum. The oscillations of the two fields are perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave. Electromagnetic waves can be characterized by either the frequency or wavelength of their oscillations to form the electromagnetic spectrum, which includes, in order of increasing frequency and decreasing wavelength: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.Electromagnetic waves are produced whenever charged particles are accelerated, and these waves can subsequently interact with any charged particles. EM waves carry energy, momentum and angular momentum away from their source particle and can impart those quantities to matter with which they interact. Quanta of EM waves are called photons, which are massless, but they are still affected by gravity. Electromagnetic radiation is associated with those EM waves that are free to propagate themselves (""radiate"") without the continuing influence of the moving charges that produced them, because they have achieved sufficient distance from those charges. Thus, EMR is sometimes referred to as the far field. In this jargon, the near field refers to EM fields near the charges and current that directly produced them, specifically, electromagnetic induction and electrostatic induction phenomena.In the quantum theory of electromagnetism, EMR consists of photons, the elementary particles responsible for all electromagnetic interactions. Quantum effects provide additional sources of EMR, such as the transition of electrons to lower energy levels in an atom and black-body radiation. The energy of an individual photon is quantized and is greater for photons of higher frequency. This relationship is given by Planck's equation E=hν, where E is the energy per photon, ν is the frequency of the photon, and h is Planck's constant. A single gamma ray photon, for example, might carry ~100,000 times the energy of a single photon of visible light.The effects of EMR upon biological systems (and also to many other chemical systems, under standard conditions) depend both upon the radiation's power and its frequency. For EMR of visible frequencies or lower (i.e., radio, microwave, infrared), the damage done to cells and other materials is determined mainly by power and caused primarily by heating effects from the combined energy transfer of many photons. By contrast, for ultraviolet and higher frequencies (i.e., X-rays and gamma rays), chemical materials and living cells can be further damaged beyond that done by simple heating, since individual photons of such high frequency have enough energy to cause direct molecular damage.