• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
EM theory and its application to microwave remote sensing
EM theory and its application to microwave remote sensing

... It is sometimes useful to refer to a medium’s refractive index, n, where n 2   r  r  j r or n   r ...
Transmission Lines - Text of NPTEL IIT Video Lectures
Transmission Lines - Text of NPTEL IIT Video Lectures

Hong Kong Polytechnic University
Hong Kong Polytechnic University

chapter7
chapter7

... Normally defined for harmonic waves and is understood to be the number of cycles of the harmonic (sinusoidal for example) wave. For example, if we were to count the number of crests in an ocean wave passing through a fixed point in one second, the result would be the frequency of the wave. ...
electromagnetic waves
electromagnetic waves

Second semester final review
Second semester final review

November 2012 exam
November 2012 exam

physics - Regents
physics - Regents

... the horizontal ground. The mass of B is twice as great as the mass of A. If PE is the gravitational potential energy of A relative to the ground, then the gravitational potential energy of B relative to the ground is PE (1) PE ...
Potential Energy - McMaster Physics and Astronomy
Potential Energy - McMaster Physics and Astronomy

Physics 11 Kinematics Sample Test
Physics 11 Kinematics Sample Test

... a. At no time can the motion be considered "uniform." b. The object returns to its original position. c. The object travels in one direction and then the other. d. The object is accelerating throughout the entire recorded time. e. The object speeds up and later slows down. The expression “per” as in ...
Document
Document

chapter13
chapter13

Eðlisfræði 2, vor 2007
Eðlisfræði 2, vor 2007

Force and it laws (Basics)
Force and it laws (Basics)

CHAPTER 11: Vibrations and Waves Answers to Questions
CHAPTER 11: Vibrations and Waves Answers to Questions

CHAPTER 11: Vibrations and Waves Answers to Questions
CHAPTER 11: Vibrations and Waves Answers to Questions

Physics-ATAR-Unit-2
Physics-ATAR-Unit-2



Waves 2006 11 04
Waves 2006 11 04

Lecture 13. Polarization of Light
Lecture 13. Polarization of Light

Force - The Physics Doctor
Force - The Physics Doctor

Measurements - Physicslocker Index
Measurements - Physicslocker Index

Final Practice exam answer Key
Final Practice exam answer Key

Far-infrared absorber based on standing
Far-infrared absorber based on standing

Physics Toolkit - Effingham County Schools
Physics Toolkit - Effingham County Schools

... If you squeeze together several turns of the coiled-spring toy and then suddenly release them, pulses of closely-spaced turns will move away in both directions. This is called a longitudinal wave. The disturbance is in the same direction as, or parallel to, the direction of the wave’s motion. Sound ...
< 1 2 3 4 5 6 7 8 ... 22 >

Wavelength



In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats, and the inverse of the spatial frequency. It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. Wavelength is commonly designated by the Greek letter lambda (λ). The concept can also be applied to periodic waves of non-sinusoidal shape. The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.Assuming a sinusoidal wave moving at a fixed wave speed, wavelength is inversely proportional to frequency of the wave: waves with higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths.Wavelength depends on the medium (for example, vacuum, air, or water) that a wave travels through.Examples of wave-like phenomena are sound waves, light, and water waves. A sound wave is a variation in air pressure, while in light and other electromagnetic radiation the strength of the electric and the magnetic field vary. Water waves are variations in the height of a body of water. In a crystal lattice vibration, atomic positions vary.Wavelength is a measure of the distance between repetitions of a shape feature such as peaks, valleys, or zero-crossings, not a measure of how far any given particle moves. For example, in sinusoidal waves over deep water a particle near the water's surface moves in a circle of the same diameter as the wave height, unrelated to wavelength. The range of wavelengths or frequencies for wave phenomena is called a spectrum. The name originated with the visible light spectrum but now can be applied to the entire electromagnetic spectrum as well as to a sound spectrum or vibration spectrum.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report