• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Chapter 7
Chapter 7

Statistics: Informed Decisions Using Data, 4e (Sullivan)
Statistics: Informed Decisions Using Data, 4e (Sullivan)

KEY to exam 8-11-06 (34 Kb ) STT 315 Summer 2006
KEY to exam 8-11-06 (34 Kb ) STT 315 Summer 2006

Chapter 1 Test Bank Questions
Chapter 1 Test Bank Questions

Mind on Statistics Test Bank - Michigan State University`s Statistics
Mind on Statistics Test Bank - Michigan State University`s Statistics

Part VIII - Tests of Significance - Chapters 26, 28, and 29
Part VIII - Tests of Significance - Chapters 26, 28, and 29

Chapter 7
Chapter 7

Chapter 2-4. Comparison of Two Independent Groups
Chapter 2-4. Comparison of Two Independent Groups

Analyze - Hypothesis Testing Normal Data - P2
Analyze - Hypothesis Testing Normal Data - P2

Analysis of Variance - Department of Statistics
Analysis of Variance - Department of Statistics

Testing a Claim - Haiku Learning
Testing a Claim - Haiku Learning

Trend User Guide
Trend User Guide

spract5s
spract5s

CHAPTER 9
CHAPTER 9

Chapter Nine
Chapter Nine

Testing
Testing

Spract5
Spract5

Hypothesis Testing - Dixie State University :: Business Department
Hypothesis Testing - Dixie State University :: Business Department

Mind on Statistics Test Bank - Michigan State University`s Statistics
Mind on Statistics Test Bank - Michigan State University`s Statistics

Introduction to STATA
Introduction to STATA

User Manual - Statistician
User Manual - Statistician

2.Tests (TEST)
2.Tests (TEST)

multiple choice questions
multiple choice questions

7 Inferences About the Difference Between Two Means
7 Inferences About the Difference Between Two Means

Descriptive analysis of quantitative data
Descriptive analysis of quantitative data

< 1 2 3 4 5 6 7 ... 41 >

Omnibus test

Omnibus tests are a kind of statistical test. They test whether the explained variance in a set of data is significantly greater than the unexplained variance, overall. One example is the F-test in the analysis of variance. There can be legitimate significant effects within a model even if the omnibus test is not significant. For instance, in a model with two independent variables, if only one variable exerts a significant effect on the dependent variable and the other does not, then the omnibus test may be non-significant. This fact does not affect the conclusions that may be drawn from the one significant variable. In order to test effects within an omnibus test, researchers often use contrasts.In addition, Omnibus test is a general name refers to an overall or a global test and in most cases omnibus test is called in other expressions such as: F-test or Chi-squared test.Omnibus test as a statistical test is implemented on an overall hypothesis that tends to find general significance between parameters' variance, while examining parameters of the same type, such as:Hypotheses regarding equality vs. inequality between k expectancies µ1=µ2=…=µk vs. at least one pair µj≠µj' , where j,j'=1,...,k and j≠j', in Analysis Of Variance(ANOVA); or regarding equality between k standard deviations σ1= σ2=….= σ k vs. at least one pair σj≠ σj' in testing equality of variances in ANOVA; or regarding coefficients β1= β2=….= βk vs. at least one pair βj≠βj' in Multiple linear regression or in Logistic regression.Usually, it tests more than two parameters of the same type and its role is to find general significance of at least one of the parameters involved.Omnibus tests commonly refers to either one of those statistical tests: ANOVA F test to test significance between all factor means and/or between their variances equality in Analysis of Variance procedure ; The omnibus multivariate F Test in ANOVA with repeated measures ; F test for equality/inequality of the regression coefficients in Multiple Regression; Chi-Square test for exploring significance differences between blocks of independent explanatory variables or their coefficients in a logistic regression.Those omnibus tests are usually conducted whenever one tends to test an overall hypothesis on a quadratic statistic (like sum of squares or variance or covariance) or rational quadratic statistic (like the ANOVA overall F test in Analysis of Variance or F Test in Analysis of covariance or the F Test in Linear Regression, or Chi-Square in Logistic Regression).While significance is founded on the omnibus test, it doesn't specify exactly where the difference is occurred, meaning, it doesn't bring specification on which parameter is significally different from the other, but it statistically determine that there is a difference, so at least two of the tested parameters are statistically different. If significance was met, none of those tests will tell specifically which mean differs from the others (in ANOVA), which coefficient differs from the others (in Regression) etc.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report