• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Conjectures for Geometry for Math 70 By I. L. Tse Chapter 2
Conjectures for Geometry for Math 70 By I. L. Tse Chapter 2

... 1. Triangle Sum Conjecture – the sum of the measures of angles in every triangle is 180°. 2. Isosceles Triangle Conjecture: If a triangle is isosceles, then its base angles are congruent. 3. Converse of the Isosceles Triangle Conjecture: If a triangle has two congruent angles, then the triangle is ...
Valley Angles
Valley Angles

... Rise = Run X tan (ANGLE) Rise ...
Task - Illustrative Mathematics
Task - Illustrative Mathematics

... For quadrilaterals, on the other hand, these nice tests seem to be lacking. This task addresses this issue for a specific class of quadrilaterals, namely parallelograms. This task is ideal for hands-on work or work with a computer to help visualize the possibilities. It turns out that knowing all fo ...
4.4 Form K Answers - Verona Public Schools
4.4 Form K Answers - Verona Public Schools

Euclid-Geometry - University of Hawaii Mathematics
Euclid-Geometry - University of Hawaii Mathematics

CONGRUENCE
CONGRUENCE

Chap 4 notes
Chap 4 notes

Congruence Implies Congruent Corresponding Parts
Congruence Implies Congruent Corresponding Parts

Trigonometry packet Geometry honors
Trigonometry packet Geometry honors

Similarity - farhandossaji
Similarity - farhandossaji

R.4.G.4 Identify the attributes of the five Platonic Solids
R.4.G.4 Identify the attributes of the five Platonic Solids

lesson 2-l - Oregon Focus on Math
lesson 2-l - Oregon Focus on Math

Chapter 3
Chapter 3

Geometry - Ms. Logsdon Math
Geometry - Ms. Logsdon Math

A Guide to Evaluating Trigonometric Functions for Common Angle
A Guide to Evaluating Trigonometric Functions for Common Angle

... We first notice that the tangent, cotangent, secant, and cosecant functions are derived from the sine and cosine functions. Therefore, if we learn the first two table rows, we will be able to reconstruct the remaining four rows. We have cut our work by nearly 1/3! (I use the word “nearly” because th ...
090116 Day3 Angle Bisectors and Perp Bisectors PPI contd.notebook
090116 Day3 Angle Bisectors and Perp Bisectors PPI contd.notebook

Chapter 3
Chapter 3

MAFS Geo EOC Review Congruency Similarity and Right Triangles
MAFS Geo EOC Review Congruency Similarity and Right Triangles

File
File

Isosceles Triangles
Isosceles Triangles

Example - Ituna School
Example - Ituna School

Name: Period: ______ 4.1 Tricky Triangles 1) Triangle Sum
Name: Period: ______ 4.1 Tricky Triangles 1) Triangle Sum

Proofs math 2 - Sage Middle School
Proofs math 2 - Sage Middle School

Unit 3: Geometry Gallery
Unit 3: Geometry Gallery

9th CBSE {SA - 1} Revision Pack Booklet-6
9th CBSE {SA - 1} Revision Pack Booklet-6

< 1 ... 56 57 58 59 60 61 62 63 64 ... 552 >

Euler angles



The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body. To describe such an orientation in 3-dimensional Euclidean space three parameters are required. They can be given in several ways, Euler angles being one of them; see charts on SO(3) for others. Euler angles are also used to describe the orientation of a frame of reference (typically, a coordinate system or basis) relative to another. They are typically denoted as α, β, γ, or φ, θ, ψ.Euler angles represent a sequence of three elemental rotations, i.e. rotations about the axes of a coordinate system. For instance, a first rotation about z by an angle α, a second rotation about x by an angle β, and a last rotation again about z, by an angle γ. These rotations start from a known standard orientation. In physics, this standard initial orientation is typically represented by a motionless (fixed, global, or world) coordinate system; in linear algebra, by a standard basis.Any orientation can be achieved by composing three elemental rotations. The elemental rotations can either occur about the axes of the fixed coordinate system (extrinsic rotations) or about the axes of a rotating coordinate system, which is initially aligned with the fixed one, and modifies its orientation after each elemental rotation (intrinsic rotations). The rotating coordinate system may be imagined to be rigidly attached to a rigid body. In this case, it is sometimes called a local coordinate system. Without considering the possibility of using two different conventions for the definition of the rotation axes (intrinsic or extrinsic), there exist twelve possible sequences of rotation axes, divided in two groups: Proper Euler angles (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y) Tait–Bryan angles (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z). Tait–Bryan angles are also called Cardan angles; nautical angles; heading, elevation, and bank; or yaw, pitch, and roll. Sometimes, both kinds of sequences are called ""Euler angles"". In that case, the sequences of the first group are called proper or classic Euler angles.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report