
1. Refer to the figure on page 238. 2. Refer to the figure on page 238
... SOLUTION: a. The two lines represent the highs and lows of a stock converging on the same price. Since the triangle is symmetrical, the top side would be a reflection of the bottom side. So, the two segments are congruent and the triangle is isosceles.The base angles of an isosceles triangle would ...
... SOLUTION: a. The two lines represent the highs and lows of a stock converging on the same price. Since the triangle is symmetrical, the top side would be a reflection of the bottom side. So, the two segments are congruent and the triangle is isosceles.The base angles of an isosceles triangle would ...
congruent polygons
... Two polygons are congruent if and only if there is a correspondence between their sides and angles such that: 1. Each pair of corresponding angles is congruent. 2. Each pair of corresponding sides is congruent. homework Holt Geometry ...
... Two polygons are congruent if and only if there is a correspondence between their sides and angles such that: 1. Each pair of corresponding angles is congruent. 2. Each pair of corresponding sides is congruent. homework Holt Geometry ...
Euclid`s Elements: Introduction to “Proofs”
... at C, then side AC would not be equal to side DF. So this cannot happen. ] Now suppose D lies outside triangle ABC and off to the right (so neither triangle ABC nor DBC contains the other). Then look at triangles BAD and CAD. Since sides BA and BD are equal, by I.5 angles BAD and BDA are equal. But ...
... at C, then side AC would not be equal to side DF. So this cannot happen. ] Now suppose D lies outside triangle ABC and off to the right (so neither triangle ABC nor DBC contains the other). Then look at triangles BAD and CAD. Since sides BA and BD are equal, by I.5 angles BAD and BDA are equal. But ...
Euler angles
The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body. To describe such an orientation in 3-dimensional Euclidean space three parameters are required. They can be given in several ways, Euler angles being one of them; see charts on SO(3) for others. Euler angles are also used to describe the orientation of a frame of reference (typically, a coordinate system or basis) relative to another. They are typically denoted as α, β, γ, or φ, θ, ψ.Euler angles represent a sequence of three elemental rotations, i.e. rotations about the axes of a coordinate system. For instance, a first rotation about z by an angle α, a second rotation about x by an angle β, and a last rotation again about z, by an angle γ. These rotations start from a known standard orientation. In physics, this standard initial orientation is typically represented by a motionless (fixed, global, or world) coordinate system; in linear algebra, by a standard basis.Any orientation can be achieved by composing three elemental rotations. The elemental rotations can either occur about the axes of the fixed coordinate system (extrinsic rotations) or about the axes of a rotating coordinate system, which is initially aligned with the fixed one, and modifies its orientation after each elemental rotation (intrinsic rotations). The rotating coordinate system may be imagined to be rigidly attached to a rigid body. In this case, it is sometimes called a local coordinate system. Without considering the possibility of using two different conventions for the definition of the rotation axes (intrinsic or extrinsic), there exist twelve possible sequences of rotation axes, divided in two groups: Proper Euler angles (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y) Tait–Bryan angles (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z). Tait–Bryan angles are also called Cardan angles; nautical angles; heading, elevation, and bank; or yaw, pitch, and roll. Sometimes, both kinds of sequences are called ""Euler angles"". In that case, the sequences of the first group are called proper or classic Euler angles.