• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Abstracts - VBN - Aalborg Universitet
Abstracts - VBN - Aalborg Universitet

Stats Chapter 8 Sect 1 and 2
Stats Chapter 8 Sect 1 and 2

PDF
PDF

File
File

handout10 - Georgia Tech ISyE
handout10 - Georgia Tech ISyE

STRONG LAWS AND SUMMABILITY FOR SEQUENCES OF ϕ
STRONG LAWS AND SUMMABILITY FOR SEQUENCES OF ϕ

1 Conditional probability
1 Conditional probability

Large Sample Properties of Generalized Method of Moments
Large Sample Properties of Generalized Method of Moments

Ch 6 and 7 Review
Ch 6 and 7 Review

Chapter 13: Probability: What Are the Chances?
Chapter 13: Probability: What Are the Chances?



A Note on Closure Properties of Classes of Discrete Lifetime
A Note on Closure Properties of Classes of Discrete Lifetime

Lecture 1
Lecture 1

handout mode
handout mode

Section 4.2 Exercises Section 4.3 Exercises
Section 4.2 Exercises Section 4.3 Exercises

Introduction to Statistics
Introduction to Statistics

Entropy estimation of very short symbolic sequences
Entropy estimation of very short symbolic sequences

HW2 Solutions, for MATH441, STAT461, STAT561, due September
HW2 Solutions, for MATH441, STAT461, STAT561, due September

Probability
Probability

... The calculated likelihood that a given event will occur ...
Expectation and Functions of Random Variables
Expectation and Functions of Random Variables

Combining random variables
Combining random variables

Digital Image Processing, 2nd ed.
Digital Image Processing, 2nd ed.

Math 219 Ch. 6 Homework
Math 219 Ch. 6 Homework

... 6.1 The Standard Normal Distribution 1. A bottle of water contains 12.05 fluid ounces with a standard deviation of 0.01 ounces. Define the random variable X in words. X = ____________. 2. A normal distribution has a mean of 61 and a standard deviation of 15. What is the median? 3. X ~ N(1, 2) σ = __ ...
Introduction to Probability and Statistics Using R
Introduction to Probability and Statistics Using R

... This book was expanded from lecture materials I use in a one semester upper-division undergraduate course entitled Probability and Statistics at Youngstown State University. Those lecture materials, in turn, were based on notes that I transcribed as a graduate student at Bowling Green State Universi ...
Backtesting trading risk of commercial banks using expected shortfall
Backtesting trading risk of commercial banks using expected shortfall

< 1 ... 91 92 93 94 95 96 97 98 99 ... 529 >

Statistics



Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data. In applying statistics to, e.g., a scientific, industrial, or societal problem, it is conventional to begin with a statistical population or a statistical model process to be studied. Populations can be diverse topics such as ""all persons living in a country"" or ""every atom composing a crystal"". Statistics deals with all aspects of data including the planning of data collection in terms of the design of surveys and experiments.When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation.Two main statistical methodologies are used in data analysis: descriptive statistics, which summarizes data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draws conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of a distribution (sample or population): central tendency (or location) seeks to characterize the distribution's central or typical value, while dispersion (or variability) characterizes the extent to which members of the distribution depart from its center and each other. Inferences on mathematical statistics are made under the framework of probability theory, which deals with the analysis of random phenomena.A standard statistical procedure involves the test of the relationship between two statistical data sets, or a data set and a synthetic data drawn from idealized model. An hypothesis is proposed for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in the test. Working from a null hypothesis, two basic forms of error are recognized: Type I errors (null hypothesis is falsely rejected giving a ""false positive"") and Type II errors (null hypothesis fails to be rejected and an actual difference between populations is missed giving a ""false negative""). Multiple problems have come to be associated with this framework: ranging from obtaining a sufficient sample size to specifying an adequate null hypothesis.Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as random (noise) or systematic (bias), but other important types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data and/or censoring may result in biased estimates and specific techniques have been developed to address these problems.Statistics can be said to have begun in ancient civilization, going back at least to the 5th century BC, but it was not until the 18th century that it started to draw more heavily from calculus and probability theory. Statistics continues to be an area of active research, for example on the problem of how to analyze Big data.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report