• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
lsa352.lec1 - My FIT (my.fit.edu)
lsa352.lec1 - My FIT (my.fit.edu)

Transformation of Graphical Models to Support Knowledge Transfer
Transformation of Graphical Models to Support Knowledge Transfer

LSA.303 Introduction to Computational Linguistics
LSA.303 Introduction to Computational Linguistics

MATHEMATICS PART-4 of 4
MATHEMATICS PART-4 of 4

APPLICATION OF RELIABILITY METHODS TO THE DESIGN OF UNDERGROUND STRUCTURES
APPLICATION OF RELIABILITY METHODS TO THE DESIGN OF UNDERGROUND STRUCTURES

1 Chapter 6 Continuous Probability Distributions Learning objectives
1 Chapter 6 Continuous Probability Distributions Learning objectives

... 4.1. Understand relationship between Poisson and Exponetial distribution. ...
Elementary probability theory in the Eindhoven style
Elementary probability theory in the Eindhoven style

Solutions to Exercises Marked with sG from the book Introduction to
Solutions to Exercises Marked with sG from the book Introduction to

K–10 Grade Level Expectations: Mathematics - St. John
K–10 Grade Level Expectations: Mathematics - St. John

Markov Chains and Monte Carlo Methods
Markov Chains and Monte Carlo Methods

... opening of the market every day. During the day we can trace the share price continuously, which would constitute a stochastic process in continuous time. We can distinguish between processes not only based on their index set T , but also based on their state space S, which gives the “range” of poss ...
Unweighted and weighted histograms comparison
Unweighted and weighted histograms comparison

... comparison of histograms. First suggested by Pearson at 1904 the χ2 test of homogeneity is used widely for comparing usual (unweighted) histograms. The modification of χ2 test for comparison of weighted and unweighted histograms was proposed at 2005 (see Proceedings of PHYSTAT2005, Oxford 2005). Thi ...
Free probability, random Vandermonde matrices
Free probability, random Vandermonde matrices

... A more general theory, where the random variables are matrices (or more generally, elements in a unital ∗-algebra (denoted A), typically B (H)), with their eigenvalue distribution (spectrum) taking the role as the p.d.f. The above mentioned concepts have their analogues in this theory. For instance, ...
Introductory Statistics (2
Introductory Statistics (2

Reliability Modeling of Wind Turbines: Exemplified by Power Converter Systems as Basis
Reliability Modeling of Wind Turbines: Exemplified by Power Converter Systems as Basis

Probability - Princeton High School
Probability - Princeton High School

C 4 HAPTER Basic Probability
C 4 HAPTER Basic Probability

clusters
clusters

Assumptions underlying regression analysis
Assumptions underlying regression analysis

Models and Methods in the Philosophy OF Science
Models and Methods in the Philosophy OF Science

Statistics - Lakewood City Schools
Statistics - Lakewood City Schools

S+SeqTrial User`s Guide
S+SeqTrial User`s Guide

Wild bootstrap
Wild bootstrap

Part I - ECSE - Rensselaer Polytechnic Institute
Part I - ECSE - Rensselaer Polytechnic Institute

Graduate Texts in Mathematics 230
Graduate Texts in Mathematics 230

... the enormous advantage over the material in Chapters 3 and 4 that it provides an estimate on the rate at which the chain is converging to its equilibrium distribution. After giving a reasonably thorough account of Doeblin's theory, in Chapter 3 I study the ergodic properties of Markov chains which d ...
Chapter 2 - Memorial University
Chapter 2 - Memorial University

... Figure B.5a Normal Probability Density Functions with Means μ and Variance 1 Principles of Econometrics, 3rd Edition ...
< 1 ... 5 6 7 8 9 10 11 12 13 ... 529 >

Statistics



Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data. In applying statistics to, e.g., a scientific, industrial, or societal problem, it is conventional to begin with a statistical population or a statistical model process to be studied. Populations can be diverse topics such as ""all persons living in a country"" or ""every atom composing a crystal"". Statistics deals with all aspects of data including the planning of data collection in terms of the design of surveys and experiments.When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation.Two main statistical methodologies are used in data analysis: descriptive statistics, which summarizes data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draws conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of a distribution (sample or population): central tendency (or location) seeks to characterize the distribution's central or typical value, while dispersion (or variability) characterizes the extent to which members of the distribution depart from its center and each other. Inferences on mathematical statistics are made under the framework of probability theory, which deals with the analysis of random phenomena.A standard statistical procedure involves the test of the relationship between two statistical data sets, or a data set and a synthetic data drawn from idealized model. An hypothesis is proposed for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in the test. Working from a null hypothesis, two basic forms of error are recognized: Type I errors (null hypothesis is falsely rejected giving a ""false positive"") and Type II errors (null hypothesis fails to be rejected and an actual difference between populations is missed giving a ""false negative""). Multiple problems have come to be associated with this framework: ranging from obtaining a sufficient sample size to specifying an adequate null hypothesis.Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as random (noise) or systematic (bias), but other important types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data and/or censoring may result in biased estimates and specific techniques have been developed to address these problems.Statistics can be said to have begun in ancient civilization, going back at least to the 5th century BC, but it was not until the 18th century that it started to draw more heavily from calculus and probability theory. Statistics continues to be an area of active research, for example on the problem of how to analyze Big data.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report