• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
MBA 702 (Fall 2011)
MBA 702 (Fall 2011)

Simple Hypotheses - University of Arizona Math
Simple Hypotheses - University of Arizona Math

Educational Research
Educational Research

Statistics for Psychology
Statistics for Psychology

Common Core State Standards Related to Two
Common Core State Standards Related to Two

II. Inferential Statistics (4) Testing a hypothesis 1.
II. Inferential Statistics (4) Testing a hypothesis 1.

... enough to be viewed as a probable outcome under the null hypothesis ...
syllabus - Dominique Haughton
syllabus - Dominique Haughton

exam1bkey
exam1bkey

Chapter 1 PowerPoint
Chapter 1 PowerPoint

... b. Data is numerical; 0 can be used to indicate a position in time or space, however, the zero at this level does not correspond to “none” of the specific variable being measured. 1) The position on the thermometer of zero degrees does not indicate that is absolutely no heat present. c. Differences ...
Document
Document

9.1A Notes File - Northwest ISD Moodle
9.1A Notes File - Northwest ISD Moodle

INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 4
INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 4

Central Tendency
Central Tendency

PPT - StatsTools
PPT - StatsTools

lecture012_2004
lecture012_2004

Section 7.3 sampling distribution of sample proportion discussion
Section 7.3 sampling distribution of sample proportion discussion

Section 8.3 ~ Estimating Population Proportions
Section 8.3 ~ Estimating Population Proportions

intro
intro

The State of Probabilistic Flood Hazard Assessment: Data; Physics; Statistics; and Uncertainty
The State of Probabilistic Flood Hazard Assessment: Data; Physics; Statistics; and Uncertainty

Quality Control Tools
Quality Control Tools

Lecture 5(May 14)
Lecture 5(May 14)

Use and traditional knowledge of plant resources by the resettlers in
Use and traditional knowledge of plant resources by the resettlers in

Review of Chapters 1-5
Review of Chapters 1-5

Collection of data
Collection of data

Appendix 5.3.2 The Null Hypothesis, Type I / Type II Error, P
Appendix 5.3.2 The Null Hypothesis, Type I / Type II Error, P

< 1 ... 498 499 500 501 502 503 504 505 506 ... 529 >

Statistics



Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data. In applying statistics to, e.g., a scientific, industrial, or societal problem, it is conventional to begin with a statistical population or a statistical model process to be studied. Populations can be diverse topics such as ""all persons living in a country"" or ""every atom composing a crystal"". Statistics deals with all aspects of data including the planning of data collection in terms of the design of surveys and experiments.When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation.Two main statistical methodologies are used in data analysis: descriptive statistics, which summarizes data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draws conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of a distribution (sample or population): central tendency (or location) seeks to characterize the distribution's central or typical value, while dispersion (or variability) characterizes the extent to which members of the distribution depart from its center and each other. Inferences on mathematical statistics are made under the framework of probability theory, which deals with the analysis of random phenomena.A standard statistical procedure involves the test of the relationship between two statistical data sets, or a data set and a synthetic data drawn from idealized model. An hypothesis is proposed for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in the test. Working from a null hypothesis, two basic forms of error are recognized: Type I errors (null hypothesis is falsely rejected giving a ""false positive"") and Type II errors (null hypothesis fails to be rejected and an actual difference between populations is missed giving a ""false negative""). Multiple problems have come to be associated with this framework: ranging from obtaining a sufficient sample size to specifying an adequate null hypothesis.Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as random (noise) or systematic (bias), but other important types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data and/or censoring may result in biased estimates and specific techniques have been developed to address these problems.Statistics can be said to have begun in ancient civilization, going back at least to the 5th century BC, but it was not until the 18th century that it started to draw more heavily from calculus and probability theory. Statistics continues to be an area of active research, for example on the problem of how to analyze Big data.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report