
S.Y.Novak Extreme value methods with applications to finance
... Extreme value theory (EVT) is a rapidly growing branch of modern probability and statistics. It has important applications in actuarial and financial mathematics, hydrology, meteorology, and other fields. The classical EVT that deals with independent random variables has been fully developed by the ...
... Extreme value theory (EVT) is a rapidly growing branch of modern probability and statistics. It has important applications in actuarial and financial mathematics, hydrology, meteorology, and other fields. The classical EVT that deals with independent random variables has been fully developed by the ...
Probability
... face down and shuffle the papers again. • Discuss with your student what each outcome of the game is, what the sample space is, whether it is a uniform probability model, and whether it is a fair game. Then find the theoretical probability of each outcome. • Play the game several times, recording ...
... face down and shuffle the papers again. • Discuss with your student what each outcome of the game is, what the sample space is, whether it is a uniform probability model, and whether it is a fair game. Then find the theoretical probability of each outcome. • Play the game several times, recording ...
comprehensive tutorial_iii
... interval estimate obtained by a procedure satisfying the probability requirement. It is found by constructing an interval around the point estimate of the form : ...
... interval estimate obtained by a procedure satisfying the probability requirement. It is found by constructing an interval around the point estimate of the form : ...
Math 116 - Review Chapter 5
... 9) A test consists of 10 true/false questions. To pass the test a student must answer at least 6 questions correctly. If a student guesses on each question, what is the probability that the student will pass the test? 10) In one city, the probability that a person will pass his or her driving test o ...
... 9) A test consists of 10 true/false questions. To pass the test a student must answer at least 6 questions correctly. If a student guesses on each question, what is the probability that the student will pass the test? 10) In one city, the probability that a person will pass his or her driving test o ...
Introducing Inferential Statistics
... ◦ Probability that chance influenced observed differences ◦ It does NOT refer to the meaningfulness or “importance” of observed differences ...
... ◦ Probability that chance influenced observed differences ◦ It does NOT refer to the meaningfulness or “importance” of observed differences ...
File
... Pn( t ) : The random variable x has a poisson distribution with parameter t . Where is a rate per unit and t is a time interval. ...
... Pn( t ) : The random variable x has a poisson distribution with parameter t . Where is a rate per unit and t is a time interval. ...
Unbiased sampling distribution with the smallest standard deviation
... STEP 1: Identify the population of interest and the parameter you want to draw conclusions about. You can do this in the statement … STEP 2: State the null and alternative hypotheses in symbols. You can also state this in words to combine Steps 1 and Step 2. STEP 3: Choose the appropriate infere ...
... STEP 1: Identify the population of interest and the parameter you want to draw conclusions about. You can do this in the statement … STEP 2: State the null and alternative hypotheses in symbols. You can also state this in words to combine Steps 1 and Step 2. STEP 3: Choose the appropriate infere ...
Statistics
Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data. In applying statistics to, e.g., a scientific, industrial, or societal problem, it is conventional to begin with a statistical population or a statistical model process to be studied. Populations can be diverse topics such as ""all persons living in a country"" or ""every atom composing a crystal"". Statistics deals with all aspects of data including the planning of data collection in terms of the design of surveys and experiments.When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation.Two main statistical methodologies are used in data analysis: descriptive statistics, which summarizes data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draws conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of a distribution (sample or population): central tendency (or location) seeks to characterize the distribution's central or typical value, while dispersion (or variability) characterizes the extent to which members of the distribution depart from its center and each other. Inferences on mathematical statistics are made under the framework of probability theory, which deals with the analysis of random phenomena.A standard statistical procedure involves the test of the relationship between two statistical data sets, or a data set and a synthetic data drawn from idealized model. An hypothesis is proposed for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in the test. Working from a null hypothesis, two basic forms of error are recognized: Type I errors (null hypothesis is falsely rejected giving a ""false positive"") and Type II errors (null hypothesis fails to be rejected and an actual difference between populations is missed giving a ""false negative""). Multiple problems have come to be associated with this framework: ranging from obtaining a sufficient sample size to specifying an adequate null hypothesis.Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as random (noise) or systematic (bias), but other important types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data and/or censoring may result in biased estimates and specific techniques have been developed to address these problems.Statistics can be said to have begun in ancient civilization, going back at least to the 5th century BC, but it was not until the 18th century that it started to draw more heavily from calculus and probability theory. Statistics continues to be an area of active research, for example on the problem of how to analyze Big data.