• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Poisson Statistics - University of Tennessee Physics
Poisson Statistics - University of Tennessee Physics

DevStat9e_03_05
DevStat9e_03_05

Tests for Fold Change of Two Means
Tests for Fold Change of Two Means

Stats for Engineers: Lecture 4
Stats for Engineers: Lecture 4

Lesson 5: Discrete Random Variables
Lesson 5: Discrete Random Variables

Document
Document

Lecture 2
Lecture 2

Lesson 5: Discrete Random Variables
Lesson 5: Discrete Random Variables

Statistics 510: Notes 1
Statistics 510: Notes 1

... played once. The subjective interpretation of a statement that the Eagles have a probability of 0.1 of winning the Super Bowl is that:  If the person making the statement were offered a chance to play a game in which the person was required to pay less than 10 cents to buy into the game and would w ...
13.1 The Basics of Probability Theory
13.1 The Basics of Probability Theory

Unit 7 Extra Practice Answers
Unit 7 Extra Practice Answers

MATH20802: STATISTICAL METHODS LECTURE NOTES
MATH20802: STATISTICAL METHODS LECTURE NOTES

Random Variables
Random Variables

m7u7answers
m7u7answers

portable document (.pdf) format
portable document (.pdf) format

Homework 5 answers in pdf format
Homework 5 answers in pdf format

8–3 z Test for a Mean
8–3 z Test for a Mean

Tests for One Mean
Tests for One Mean

1 Continuous random variables
1 Continuous random variables

... Of course when given a random variable such as the waiting time to a geiger counter event, we are not handed its pdf as well. The pdf is a model of the situation. In the case of an example such as this, we really are faced with two decisions. 1. Which family (e.g., uniform, exponential, etc.) of mod ...
Probability
Probability

Document
Document

June 20(Lecture 10)
June 20(Lecture 10)

Chapter 6: Random Variables
Chapter 6: Random Variables

Lect1_2008
Lect1_2008

... the probability in general in the book “Chance and Chaos” by David Ruelle (Princeton Sci. Lib.) ...
Some introductory notes on probability
Some introductory notes on probability

< 1 ... 228 229 230 231 232 233 234 235 236 ... 529 >

Statistics



Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data. In applying statistics to, e.g., a scientific, industrial, or societal problem, it is conventional to begin with a statistical population or a statistical model process to be studied. Populations can be diverse topics such as ""all persons living in a country"" or ""every atom composing a crystal"". Statistics deals with all aspects of data including the planning of data collection in terms of the design of surveys and experiments.When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation.Two main statistical methodologies are used in data analysis: descriptive statistics, which summarizes data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draws conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of a distribution (sample or population): central tendency (or location) seeks to characterize the distribution's central or typical value, while dispersion (or variability) characterizes the extent to which members of the distribution depart from its center and each other. Inferences on mathematical statistics are made under the framework of probability theory, which deals with the analysis of random phenomena.A standard statistical procedure involves the test of the relationship between two statistical data sets, or a data set and a synthetic data drawn from idealized model. An hypothesis is proposed for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in the test. Working from a null hypothesis, two basic forms of error are recognized: Type I errors (null hypothesis is falsely rejected giving a ""false positive"") and Type II errors (null hypothesis fails to be rejected and an actual difference between populations is missed giving a ""false negative""). Multiple problems have come to be associated with this framework: ranging from obtaining a sufficient sample size to specifying an adequate null hypothesis.Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as random (noise) or systematic (bias), but other important types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data and/or censoring may result in biased estimates and specific techniques have been developed to address these problems.Statistics can be said to have begun in ancient civilization, going back at least to the 5th century BC, but it was not until the 18th century that it started to draw more heavily from calculus and probability theory. Statistics continues to be an area of active research, for example on the problem of how to analyze Big data.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report