• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Lecture Note
Lecture Note

statistics - Textbooks Online
statistics - Textbooks Online

PERFECT TREE-LIKE MARKBVIAN DISTRIBUTIONS
PERFECT TREE-LIKE MARKBVIAN DISTRIBUTIONS

77597520 - TeacherWeb
77597520 - TeacherWeb

... Independent Event = is not influenced by another event, outcome is not related to another event Example: coin, die, marbles in a hat, cards Dependent Event = is influenced by another event Example: rain today (dependent on weather yesterday as weather has weather patterns) Example: people behavior ...
Chapter 9 - McGraw Hill Higher Education
Chapter 9 - McGraw Hill Higher Education

PROBABILITY: Binomial Probability
PROBABILITY: Binomial Probability

... island, they have no rain on exactly three of the five days? ...
Random Field Theory
Random Field Theory

1332Probability&ProbabilityDistribution.pdf
1332Probability&ProbabilityDistribution.pdf

PPTX
PPTX

Sample selection bias and presence-only distribution models:
Sample selection bias and presence-only distribution models:

... region. These data, called background or pseudo-absence data, are usually drawn at random from the entire region, whereas occurrence collection is often spatially biased toward easily accessed areas. Since the spatial bias generally results in environmental bias, the difference between occurrence co ...
Document
Document

... Example Problem: How many possible committees of size four could be formed using members of this class? ...
Supplement to Chapter 2 - Probability and Statistics
Supplement to Chapter 2 - Probability and Statistics

IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN:2319-765X.
IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN:2319-765X.

New Coke - STOR at UNC
New Coke - STOR at UNC

Unit 4: Elementary Probability Theory Section 1
Unit 4: Elementary Probability Theory Section 1

Ch5: Discrete Probability Distributions
Ch5: Discrete Probability Distributions

anova
anova

... INCM 9102 Quantitative Methods ANOVA ...
Simple hypothesis testing - Mathematisch Instituut Leiden
Simple hypothesis testing - Mathematisch Instituut Leiden

part2s - NYU Stern School of Business
part2s - NYU Stern School of Business

A ∩ B
A ∩ B

Jeopardy-math
Jeopardy-math

CH 5.2
CH 5.2

A ∩ B
A ∩ B

P(H | B)
P(H | B)

... Suppose there are two bowls full of cookies. Bowl #1 has 10 chocolate chip cookies and 30 plain cookies, while bowl #2 has 20 of each. Fred picks a bowl at random, and then picks a cookie at random. We may assume there is no reason to believe Fred treats one bowl differently from another, likewise f ...
Chapter 4
Chapter 4

< 1 ... 119 120 121 122 123 124 125 126 127 ... 529 >

Statistics



Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data. In applying statistics to, e.g., a scientific, industrial, or societal problem, it is conventional to begin with a statistical population or a statistical model process to be studied. Populations can be diverse topics such as ""all persons living in a country"" or ""every atom composing a crystal"". Statistics deals with all aspects of data including the planning of data collection in terms of the design of surveys and experiments.When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation.Two main statistical methodologies are used in data analysis: descriptive statistics, which summarizes data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draws conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of a distribution (sample or population): central tendency (or location) seeks to characterize the distribution's central or typical value, while dispersion (or variability) characterizes the extent to which members of the distribution depart from its center and each other. Inferences on mathematical statistics are made under the framework of probability theory, which deals with the analysis of random phenomena.A standard statistical procedure involves the test of the relationship between two statistical data sets, or a data set and a synthetic data drawn from idealized model. An hypothesis is proposed for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in the test. Working from a null hypothesis, two basic forms of error are recognized: Type I errors (null hypothesis is falsely rejected giving a ""false positive"") and Type II errors (null hypothesis fails to be rejected and an actual difference between populations is missed giving a ""false negative""). Multiple problems have come to be associated with this framework: ranging from obtaining a sufficient sample size to specifying an adequate null hypothesis.Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as random (noise) or systematic (bias), but other important types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data and/or censoring may result in biased estimates and specific techniques have been developed to address these problems.Statistics can be said to have begun in ancient civilization, going back at least to the 5th century BC, but it was not until the 18th century that it started to draw more heavily from calculus and probability theory. Statistics continues to be an area of active research, for example on the problem of how to analyze Big data.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report