Mag & e-mag power point
... A magnet suspended so that it can rotate freely horizontally will eventually settle down with one pole facing north and the other south. This is pole is therefore called the ‘north seeking pole’, usually shortened to just ‘north pole’. ...
... A magnet suspended so that it can rotate freely horizontally will eventually settle down with one pole facing north and the other south. This is pole is therefore called the ‘north seeking pole’, usually shortened to just ‘north pole’. ...
pdf
... crystalline solids exposed to extremely large magnetic fields. Due to the periodic nature of the electric fields in a crystal, the electrons are restricted to series of energy bands. When a magnetic field is applied to electrons inside a crystal, their motion is modified by the Lorentz force and the ...
... crystalline solids exposed to extremely large magnetic fields. Due to the periodic nature of the electric fields in a crystal, the electrons are restricted to series of energy bands. When a magnetic field is applied to electrons inside a crystal, their motion is modified by the Lorentz force and the ...
1B11 Foundations of Astronomy Star names and magnitudes
... the small scale lengths, the frozen-in flux approximation breaks down magnetic flux diffuse from both sides. The field reconnects to form 2 hairpin like field lines, which rapidly contract away from the neutral “X”-point. Outflows jets of plasma are formed, also moving away from the “X”-point, on ...
... the small scale lengths, the frozen-in flux approximation breaks down magnetic flux diffuse from both sides. The field reconnects to form 2 hairpin like field lines, which rapidly contract away from the neutral “X”-point. Outflows jets of plasma are formed, also moving away from the “X”-point, on ...
HW8: Ch. 27 P 22, 23, 29, 39 Ch.28 Q 1, 3, 6,10 P
... vector sum of the field contributions due to each infinitesimal current element. As shown in Example 28-12, the magnetic field along the axis of a current loop is parallel to the axis because the perpendicular field contributions cancel. However, for points off the axis, the perpendicular contributi ...
... vector sum of the field contributions due to each infinitesimal current element. As shown in Example 28-12, the magnetic field along the axis of a current loop is parallel to the axis because the perpendicular field contributions cancel. However, for points off the axis, the perpendicular contributi ...
Force on the plasma / Virial theorem
... The force on an individual particle due to the electro-magnetic field (s is species index) ...
... The force on an individual particle due to the electro-magnetic field (s is species index) ...
Sources of magnetic fields
... When a piece of iron gets too hot, it is no longer attracted to a magnet. A piece of iron will ordinarily be attracted to a magnet, but when you heat the iron to a high enough temperature (called the Curie point), it loses its ability to be magnetized. Heat energy scrambles the iron atoms so that th ...
... When a piece of iron gets too hot, it is no longer attracted to a magnet. A piece of iron will ordinarily be attracted to a magnet, but when you heat the iron to a high enough temperature (called the Curie point), it loses its ability to be magnetized. Heat energy scrambles the iron atoms so that th ...
EM6 Experiment: Magnetic fields around electric currents
... Objective: To investigate the magnetic fields due to an a.c. current carrying straight wire by a search coil and CRO Apparatus: lateral search coil, CRO, signal generator, ammeter (0-1A and 0-5A a.c.), signal generator, PVC-covered copper wire (26 s.w.g.), rheostat, slotted base (2), crocodile clips ...
... Objective: To investigate the magnetic fields due to an a.c. current carrying straight wire by a search coil and CRO Apparatus: lateral search coil, CRO, signal generator, ammeter (0-1A and 0-5A a.c.), signal generator, PVC-covered copper wire (26 s.w.g.), rheostat, slotted base (2), crocodile clips ...
Electromagnetic Waves Electromagnetic (EM) Waves James Clerk
... • Loop Antenna – Magnetic field of EM wave induces a current • Tune in a station – uses the resonant frequency of ...
... • Loop Antenna – Magnetic field of EM wave induces a current • Tune in a station – uses the resonant frequency of ...
PPTX - University of Toronto Physics
... • These are the slides that I intended to show in class on Wed. Mar. 20, 2013. • They contain important ideas and questions from your reading. • Due to time constraints, I was probably not able to show all the slides during class. • They are all posted here for completeness. ...
... • These are the slides that I intended to show in class on Wed. Mar. 20, 2013. • They contain important ideas and questions from your reading. • Due to time constraints, I was probably not able to show all the slides during class. • They are all posted here for completeness. ...
Ferrofluid
A ferrofluid (portmanteau of ferromagnetic and fluid) is a liquid that becomes strongly magnetized in the presence of a magnetic field.Ferrofluid was invented in 1963 by NASA's Steve Papell as a liquid rocket fuel that could be drawn toward a pump inlet in a weightless environment by applying a magnetic field.Ferrofluids are colloidal liquids made of nanoscale ferromagnetic, or ferrimagnetic, particles suspended in a carrier fluid (usually an organic solvent or water). Each tiny particle is thoroughly coated with a surfactant to inhibit clumping. Large ferromagnetic particles can be ripped out of the homogeneous colloidal mixture, forming a separate clump of magnetic dust when exposed to strong magnetic fields. The magnetic attraction of nanoparticles is weak enough that the surfactant's Van der Waals force is sufficient to prevent magnetic clumping or agglomeration. Ferrofluids usually do not retain magnetization in the absence of an externally applied field and thus are often classified as ""superparamagnets"" rather than ferromagnets.The difference between ferrofluids and magnetorheological fluids (MR fluids) is the size of the particles. The particles in a ferrofluid primarily consist of nanoparticles which are suspended by Brownian motion and generally will not settle under normal conditions. MR fluid particles primarily consist of micrometre-scale particles which are too heavy for Brownian motion to keep them suspended, and thus will settle over time because of the inherent density difference between the particle and its carrier fluid. These two fluids have very different applications as a result.