
Uncertainty principle in view of quantum estimation theory
... Is there any better bound than SLD Fisher information matrix which is always attainable? The answer is negative: Letting A be a real hermitian matrix which is larger than J S01 , that is, A > J S01, there exists such an unbiased estimator M that V [M ] is not smaller than A. In other words, there is ...
... Is there any better bound than SLD Fisher information matrix which is always attainable? The answer is negative: Letting A be a real hermitian matrix which is larger than J S01 , that is, A > J S01, there exists such an unbiased estimator M that V [M ] is not smaller than A. In other words, there is ...
Chapter 7 The Collapse of the Wave Function
... two different discrete values for the measurement on a given particle. It is from this observation that we know something like the collapse of the state vector happens. But what is it that makes something into a measurement? The answer is not obvious, and has led to various different interpretations ...
... two different discrete values for the measurement on a given particle. It is from this observation that we know something like the collapse of the state vector happens. But what is it that makes something into a measurement? The answer is not obvious, and has led to various different interpretations ...
On model theory, non-commutative geometry and physics
... topology, on the ideal structure only. Existence of a metric, especially the one that gives rise to a structure of a differentiable manifold, is one of the key reasons of why we regard some structures as ’nice’ or ’tame’. The problem of whether and when a metric on M can be passed to approximating s ...
... topology, on the ideal structure only. Existence of a metric, especially the one that gives rise to a structure of a differentiable manifold, is one of the key reasons of why we regard some structures as ’nice’ or ’tame’. The problem of whether and when a metric on M can be passed to approximating s ...
Quantum Computing - Turing Gateway
... Many applications (find min of unsorted list, pattern matching etc.) Harrow/Hassidim/Lloyd algorithm for large systems of linear equations Exponentially faster than classical algorithms. Applications to finite element numerical methods in engineering, ...
... Many applications (find min of unsorted list, pattern matching etc.) Harrow/Hassidim/Lloyd algorithm for large systems of linear equations Exponentially faster than classical algorithms. Applications to finite element numerical methods in engineering, ...
(pdf)
... 1.2. Observables. An observable of a system is a property of the system derived from a physical measurement on the system. Examples of observables are position, momentum, energy, or spin. Take the spin of an electron, for example. Upon being measured, an electron will always either be spin up or spi ...
... 1.2. Observables. An observable of a system is a property of the system derived from a physical measurement on the system. Examples of observables are position, momentum, energy, or spin. Take the spin of an electron, for example. Upon being measured, an electron will always either be spin up or spi ...