
Simulation of Quantum Computation with Wolfram
... Quantum computation and quantum information is a rapidly developing research area of modern science and technology. Quantum computers are to be able to perform certain computational tasks much more efficiently than classical computers. At the same time a realistic quantum computer is still not availab ...
... Quantum computation and quantum information is a rapidly developing research area of modern science and technology. Quantum computers are to be able to perform certain computational tasks much more efficiently than classical computers. At the same time a realistic quantum computer is still not availab ...
quantum mechanics from classical statistics
... point wise multiplication of classical observables on the level of classical states classical correlation depends on probability distribution for the atom and its environment not available on level of probabilistic observables definition depends on details of classical observables , while many diffe ...
... point wise multiplication of classical observables on the level of classical states classical correlation depends on probability distribution for the atom and its environment not available on level of probabilistic observables definition depends on details of classical observables , while many diffe ...
Part IV
... counterpart. This is because the superposition principle allows for many possible states. • Our inability to measure every property we might like leads to information security, but generalised measurements allow more possibilities than the more familiar von Neumann measurements. • Entanglement is th ...
... counterpart. This is because the superposition principle allows for many possible states. • Our inability to measure every property we might like leads to information security, but generalised measurements allow more possibilities than the more familiar von Neumann measurements. • Entanglement is th ...
What is the quantum state?
... • Non-orthogonal quantum states cannot reliably be distinguished – just like probability distributions. • Quantum states are exponential in the number of systems – just ...
... • Non-orthogonal quantum states cannot reliably be distinguished – just like probability distributions. • Quantum states are exponential in the number of systems – just ...
Quantum Mechanics is Real Black Magic Calculus
... By an ingenious argument, the quantum noiseless coding theorem runs parallel to Shannon’s noiseless coding theorem, using much the same mathematical ideas. If we consider a long sequence of N systems drawn from the quantum source, their joint state will be ρ⊗N = ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρN, where ρi is the ...
... By an ingenious argument, the quantum noiseless coding theorem runs parallel to Shannon’s noiseless coding theorem, using much the same mathematical ideas. If we consider a long sequence of N systems drawn from the quantum source, their joint state will be ρ⊗N = ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρN, where ρi is the ...
Questions to Chapter 1 of book Quantum Computation and Quantum
... ternary swap gate using these primitives. First define the unitary matrix for each ternary quantum gate, including swap. 36. The role of measurement in quantum computing. 37. What is no-cloning theorem. Explain intuitively (no proof) why cloning is not possible, use Figure 1.11. 38. What are Bell s ...
... ternary swap gate using these primitives. First define the unitary matrix for each ternary quantum gate, including swap. 36. The role of measurement in quantum computing. 37. What is no-cloning theorem. Explain intuitively (no proof) why cloning is not possible, use Figure 1.11. 38. What are Bell s ...
motivation-to-quantum
... The two position states of a photon in a Mach-Zehnder apparatus is just one example of a quantum bit or qubit Except when addressing a particular physical implementation, we will simply talk about “basis” states 0 and 1 ...
... The two position states of a photon in a Mach-Zehnder apparatus is just one example of a quantum bit or qubit Except when addressing a particular physical implementation, we will simply talk about “basis” states 0 and 1 ...
Physics 115A Spring 2006
... Two thoughts to keep in mind when you get confused during this course: “Because atomic behavior is so unlike ordinary experience, it is very difficult to get used to, and it appears peculiar and mysterious to everyone—both to the novice and to the experienced physicist. Even the experts do not under ...
... Two thoughts to keep in mind when you get confused during this course: “Because atomic behavior is so unlike ordinary experience, it is very difficult to get used to, and it appears peculiar and mysterious to everyone—both to the novice and to the experienced physicist. Even the experts do not under ...
simulate quantum systems
... systems hinges on the exponential growth of the size of Hilbert space with the number of particles in the system. Keeping track of all degrees of freedom is thus a computationally expensive problem (e.g., the dimension of the Hilbert space of 20 qubits is > 106 ). As a result, classical computers ca ...
... systems hinges on the exponential growth of the size of Hilbert space with the number of particles in the system. Keeping track of all degrees of freedom is thus a computationally expensive problem (e.g., the dimension of the Hilbert space of 20 qubits is > 106 ). As a result, classical computers ca ...