
The Bethe ansatz after 75 years
... The wavefunction for a single quasiparticle looks very much like the wavefunction for a free particle in a ring: a plane wave of the form exp(ikx), with an energy that depends on the wavenumber k, which itself must be an integer multiple of 2π/L. Eigenstates with two or more particles are more compl ...
... The wavefunction for a single quasiparticle looks very much like the wavefunction for a free particle in a ring: a plane wave of the form exp(ikx), with an energy that depends on the wavenumber k, which itself must be an integer multiple of 2π/L. Eigenstates with two or more particles are more compl ...
Experimental one-way quantum computing
... owing to experimental noise, we use a maximum-likelihood reconstruction technique30–32. The resulting density matrix is shown in Fig. 2. The dominant diagonal elements represent the four components jHl1 jHl2 jHl3 jHl4 , jHl1 jHl2 jVl3 jVl4 , jVl1 jVl2 jHl3 jHl4 and jVl1 jVl2 jVl3 jVl4 as expected fr ...
... owing to experimental noise, we use a maximum-likelihood reconstruction technique30–32. The resulting density matrix is shown in Fig. 2. The dominant diagonal elements represent the four components jHl1 jHl2 jHl3 jHl4 , jHl1 jHl2 jVl3 jVl4 , jVl1 jVl2 jHl3 jHl4 and jVl1 jVl2 jVl3 jVl4 as expected fr ...
Entanglement Criteria for Continuous
... affect all the rest of the subsystems inevitably. For a bipartite entangled state, an outcome of a measurement on system 1 seems to be able to influence another outcome of the same measurement on system 2 simultaneously - even these two systems are space-like separated. This surprising property was ...
... affect all the rest of the subsystems inevitably. For a bipartite entangled state, an outcome of a measurement on system 1 seems to be able to influence another outcome of the same measurement on system 2 simultaneously - even these two systems are space-like separated. This surprising property was ...
Nobel Lecture: Fractional quantization
... graduate students, who have mastered quantum mechanics but are otherwise unsuspecting and innocent, a take-home exam in which they are asked to deduce superfluidity from first principles. There is no doubt a special place in hell being reserved for me at this very moment for this mean trick, for the ...
... graduate students, who have mastered quantum mechanics but are otherwise unsuspecting and innocent, a take-home exam in which they are asked to deduce superfluidity from first principles. There is no doubt a special place in hell being reserved for me at this very moment for this mean trick, for the ...
73 013601 (2006)
... of dynamical theory, the kicked rotor is more generic than the kicked harmonic oscillator, because it is a typical low dimensional system that obeys the KAM theorem, while the kicked harmonic oscillator is known to be a special degenerate system out of the framework of the KAM theorem 关14兴. It is ve ...
... of dynamical theory, the kicked rotor is more generic than the kicked harmonic oscillator, because it is a typical low dimensional system that obeys the KAM theorem, while the kicked harmonic oscillator is known to be a special degenerate system out of the framework of the KAM theorem 关14兴. It is ve ...
Quantum eraser article from Scientific Amerian
... B: Hold it. Do you think that HeisenbergÕs relationÑas above or a variant thereofÑis always the mechanism that enforces complementarity? We can only speculate as to what might have been EinsteinÕs response to the last question. For us, the answer is no. The constraints set by the uncertainty relatio ...
... B: Hold it. Do you think that HeisenbergÕs relationÑas above or a variant thereofÑis always the mechanism that enforces complementarity? We can only speculate as to what might have been EinsteinÕs response to the last question. For us, the answer is no. The constraints set by the uncertainty relatio ...
The Need for Structure in Quantum Speedups
... and Q(f ) are both tiny but D(f ) is huge. As an example, consider the Deutsch-Jozsa problem [17]: given a Boolean input (x1 , . . . , xN ), decide whether the xi ’s are all equal or whether half of them are 1 and the other half are 0, under the promise that one of these is the case. Second, if M = ...
... and Q(f ) are both tiny but D(f ) is huge. As an example, consider the Deutsch-Jozsa problem [17]: given a Boolean input (x1 , . . . , xN ), decide whether the xi ’s are all equal or whether half of them are 1 and the other half are 0, under the promise that one of these is the case. Second, if M = ...
The Road to Loop Quantum Gravity - Theoretical High
... are only valid for the presupposed metric. A background independent theory will lead to a set of equations (in GRT Einstein’s equations) which contains an undetermined metric. The form of this metric is then given by the solutions to the equations. So if you suppose GRT is a valid theory, your follo ...
... are only valid for the presupposed metric. A background independent theory will lead to a set of equations (in GRT Einstein’s equations) which contains an undetermined metric. The form of this metric is then given by the solutions to the equations. So if you suppose GRT is a valid theory, your follo ...
Educação - Química Nova
... The Periodic Table (PT) is possibly the first contact that students have with Chemistry. Familiarity with the PT can help in learning important chemical concepts such as Quantum Mechanics (QM). In general, the first introduction of QM is made theoretically by explaining the fundamental experiments o ...
... The Periodic Table (PT) is possibly the first contact that students have with Chemistry. Familiarity with the PT can help in learning important chemical concepts such as Quantum Mechanics (QM). In general, the first introduction of QM is made theoretically by explaining the fundamental experiments o ...
Fulltext
... ordinary quantum mechanics. In this respect, in the GUP framework, the usual harmonic oscillator is no longer harmonic since its time evolution is not completely oscillatory. By treating the expectation value of the momentum operator, we have shown that there is a complicated mass-dependence of this ...
... ordinary quantum mechanics. In this respect, in the GUP framework, the usual harmonic oscillator is no longer harmonic since its time evolution is not completely oscillatory. By treating the expectation value of the momentum operator, we have shown that there is a complicated mass-dependence of this ...
Bell's theorem
Bell's theorem is a ‘no-go theorem’ that draws an important distinction between quantum mechanics (QM) and the world as described by classical mechanics. This theorem is named after John Stewart Bell.In its simplest form, Bell's theorem states:Cornell solid-state physicist David Mermin has described the appraisals of the importance of Bell's theorem in the physics community as ranging from ""indifference"" to ""wild extravagance"". Lawrence Berkeley particle physicist Henry Stapp declared: ""Bell's theorem is the most profound discovery of science.""Bell's theorem rules out local hidden variables as a viable explanation of quantum mechanics (though it still leaves the door open for non-local hidden variables). Bell concluded:Bell summarized one of the least popular ways to address the theorem, superdeterminism, in a 1985 BBC Radio interview: