
Noncommutative Uniform Algebras Mati Abel and Krzysztof Jarosz
... Proof of Theorem 1. It is clear that our condition kak ≤ C,C (a) implies that ,C (ab) ≤ γ,C (a) ,C (b) , with γ = C 2 . Since the commutant Cπ is a normed real division algebra ([3] p. 127) it is isomorphic with R, C, or H. Hence by Theorem 2 any irreducible representation of A in an algebra of line ...
... Proof of Theorem 1. It is clear that our condition kak ≤ C,C (a) implies that ,C (ab) ≤ γ,C (a) ,C (b) , with γ = C 2 . Since the commutant Cπ is a normed real division algebra ([3] p. 127) it is isomorphic with R, C, or H. Hence by Theorem 2 any irreducible representation of A in an algebra of line ...
Artin E. Galois Theo..
... number of independent elements in V. Thus, the dimension of V is n if there are n independent elements in V, but no set of more than n ...
... number of independent elements in V. Thus, the dimension of V is n if there are n independent elements in V, but no set of more than n ...