• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
STRAIGHT LINE Distance Formula The distance between the points
STRAIGHT LINE Distance Formula The distance between the points

... Vertical Lines A vertical line has equation x = b where b is the point that the line crosses the x-axis. ...
Dated 1/22/01
Dated 1/22/01

1300Y Geometry and Topology, Assignment 1 Exercise 1. Let Γ be a
1300Y Geometry and Topology, Assignment 1 Exercise 1. Let Γ be a

... is C ∞ . Suppose also that the action is free , i.e. that the only group element with a fixed point is the identity. Finally suppose the action is properly discontinuous, meaning that the following conditions hold: i) Each x ∈ M̃ has a nbhd U s.t. {h ∈ Γ : (h · U ) ∩ U 6= ∅} is finite. ii) If x, y ∈ ...
Universal spaces in birational geometry
Universal spaces in birational geometry

... of an algebraic variety can be induced from abelian quotient of the fundamental group after restriction to some open subvariety. Our theorem on the structure of the Galois groups of functional fields implies a similar result for nonramified cohomology. Namely for any element a of nonramified cohomol ...
Topology Qual Winter 2000
Topology Qual Winter 2000

Kant and Kantianism
Kant and Kantianism

Full text
Full text

PDF
PDF

18.906 Problem Set 7 Due Friday, April 6 in class
18.906 Problem Set 7 Due Friday, April 6 in class

Solving Quadratic Equations by Completing the Square
Solving Quadratic Equations by Completing the Square

... Find the distance and midpoint between two points on a coordinate plane. Prove geometric relationships among points and lines using analytical methods. ...
< 1 ... 30 31 32 33 34

Group action



In mathematics, a symmetry group is an abstraction used to describe the symmetries of an object. A group action formalizes of the relationship between the group and the symmetries of the object. It relates each element of the group to a particular transformation of the object.In this case, the group is also called a permutation group (especially if the set is finite or not a vector space) or transformation group (especially if the set is a vector space and the group acts like linear transformations of the set). A permutation representation of a group G is a representation of G as a group of permutations of the set (usually if the set is finite), and may be described as a group representation of G by permutation matrices. It is the same as a group action of G on an ordered basis of a vector space.A group action is an extension to the notion of a symmetry group in which every element of the group ""acts"" like a bijective transformation (or ""symmetry"") of some set, without being identified with that transformation. This allows for a more comprehensive description of the symmetries of an object, such as a polyhedron, by allowing the same group to act on several different sets of features, such as the set of vertices, the set of edges and the set of faces of the polyhedron.If G is a group and X is a set, then a group action may be defined as a group homomorphism h from G to the symmetric group on X. The action assigns a permutation of X to each element of the group in such a way that the permutation of X assigned to the identity element of G is the identity transformation of X; a product gk of two elements of G is the composition of the permutations assigned to g and k.The abstraction provided by group actions is a powerful one, because it allows geometrical ideas to be applied to more abstract objects. Many objects in mathematics have natural group actions defined on them. In particular, groups can act on other groups, or even on themselves. Despite this generality, the theory of group actions contains wide-reaching theorems, such as the orbit stabilizer theorem, which can be used to prove deep results in several fields.
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report