• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Speed and Velocity
Speed and Velocity

From Last Time… Momentum conservation: equal masses
From Last Time… Momentum conservation: equal masses

document
document

... scaled arrows to indicate changes in velocity. • How does the velocity and displacement of an object vary with time as the object falls? Be specific. • Explain what it means when we say that the acceleration due to gravity is constant. • Suppose the true height of the bleachers was 1 meter taller th ...
Document
Document

Investigation 1
Investigation 1

Physics Review Powerpoint
Physics Review Powerpoint

Momentum, Impulse and Recoil
Momentum, Impulse and Recoil

Net force
Net force

Notes: Mechanics The Nature of Force, Motion & Energy
Notes: Mechanics The Nature of Force, Motion & Energy

... IX. ...
Midterm Exam 1
Midterm Exam 1

investigating newton`s second law of motion
investigating newton`s second law of motion

6perPage
6perPage

Mid Term S05 My Solutions PDF with thumbnails 05/26/05
Mid Term S05 My Solutions PDF with thumbnails 05/26/05

v bf = +20 cm/s
v bf = +20 cm/s

click - Uplift Education
click - Uplift Education

v - WordPress.com
v - WordPress.com

The Laws of Motion Chapter 4
The Laws of Motion Chapter 4

gravity notes - mrkearsley.com
gravity notes - mrkearsley.com

A body acted on by no net force moves with constant velocity
A body acted on by no net force moves with constant velocity

Ch 3 test
Ch 3 test

Torques & Moments of Force
Torques & Moments of Force

... the CM Note: The total angular momentum about the TBCM remains constant. An athlete can control their rate of rotation (angular velocity) by adjusting the radius of gyration, distribution (distance) of segments relative to TBCM. ...
RevfinQans111fa02
RevfinQans111fa02

6 lmpulse and momentum
6 lmpulse and momentum

Powerpoint Slide
Powerpoint Slide

4th six weeks Packet
4th six weeks Packet

< 1 ... 82 83 84 85 86 87 88 89 90 ... 156 >

Specific impulse

Specific impulse (usually abbreviated Isp) is a measure of the efficiency of rocket and jet engines. By definition, it is the impulse delivered per unit of propellant consumed, and is dimensionally equivalent to the thrust generated per unit propellant flow rate. If mass (kilogram or slug) is used as the unit of propellant, then specific impulse has units of velocity. If weight (newton or pound) is used instead, then specific impulse has units of time (seconds). The conversion constant between these two versions is the standard gravitational acceleration constant (g0). The higher the specific impulse, the lower the propellant flow rate required for a given thrust, and in the case of a rocket, the less propellant needed for a given delta-v, per the Tsiolkovsky rocket equation.Specific impulse is a useful value to compare engines, much like miles per gallon or liters per 100 kilometers is used for cars. A propulsion method and system with a higher specific impulse is more propellant-efficient. While the unit of seconds can seem confusing to laypeople, it is fairly simple to understand as ""hover-time"": how long a rocket can ""hover"" before running out of fuel, given the weight of that propellant/fuel. Of course, the weight of the rocket has to be taken out of consideration and so does the reduction in fuel weight as it's expended; the basic idea is ""how long can any given amount of x hold itself up"". Obviously that must mean ""...against Earth's gravity"", which means nothing in non-Earth conditions; hence Isp being given in velocity when propellant is measured in mass rather than weight, and the question becomes ""how fast can any given amount of x accelerate itself?""Note that Isp describes efficiency in terms of amount of propellant, and does not include the engine, structure or power source. Higher Isp means less propellant needed to impart a given momentum. Some systems with very high Isp (cf. ion thrusters) may have relatively very heavy/massive power generators, and produce thrust over a long period; thus, while they are ""efficient"" in terms of propellant mass carried, they may actually be quite poor at delivering high thrust as compared to ""less efficient"" engine/propellant designs.Another number that measures the same thing, usually used for air breathing jet engines, is specific fuel consumption. Specific fuel consumption is inversely proportional to specific impulse and the effective exhaust velocity. The actual exhaust velocity is the average speed of the exhaust jet, which includes fuel combustion products, nitrogen, and argon, as it leaves air breathing engine. The effective exhaust velocity is the exhaust velocity that the combusted fuel and atmospheric oxygen only would need to produce the same thrust. The two are identical for an ideal rocket working in vacuum, but are radically different for an air-breathing jet engine that obtains extra thrust by accelerating the non-combustible components of the air. Specific impulse and effective exhaust velocity are proportional.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report