• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Ch 10 Solutions Glencoe 2013
Ch 10 Solutions Glencoe 2013

Nuclear structure studies in the xenon and radon
Nuclear structure studies in the xenon and radon

UNIT 2 - CPO Science
UNIT 2 - CPO Science

Worked Examples from Introductory Physics Vol. I: Basic Mechanics
Worked Examples from Introductory Physics Vol. I: Basic Mechanics

Physical Response to Collision between Deformable Objects
Physical Response to Collision between Deformable Objects

10-16 Energy Homework
10-16 Energy Homework

Physics
Physics

MODELING THE BEHAVIOR OF A HOMOPOLAR MOTOR
MODELING THE BEHAVIOR OF A HOMOPOLAR MOTOR

Document
Document

Is the electrostatic force between a point charge and a neutral
Is the electrostatic force between a point charge and a neutral

... of the force. If the point charge is very close to the origin, z ≪ R, then the trigonometric factor cos θ wins out: r is virtually the same for the positive and negative charges (r ≈ R), but cos θ is much larger for the positive charges. The result is a repulsive force. On the other hand, if the poi ...
Gravitational and Inertial Mass in General Relativity
Gravitational and Inertial Mass in General Relativity

physics - KENDRIYA VIDYALAYA IIT KANPUR
physics - KENDRIYA VIDYALAYA IIT KANPUR

upgrade your physics - Oxford Physics
upgrade your physics - Oxford Physics

3 force and pressure - Assam Valley School
3 force and pressure - Assam Valley School

... Thrust is the total force acting normally on a given surface. 7. Electrostatic force and muscular force. Ans. Electric force is the force exerted by electrostatic charge. It is action at a distance force. Muscular force is the force produced by the muscles of living beings. It is contact force. 8. S ...
Science Module 3 - Education, Culture and Employment
Science Module 3 - Education, Culture and Employment

Ch 08) Rotational Motion
Ch 08) Rotational Motion

... Since v is the same for all points of a rotating object, Eq. 8–3 tells us that a also will be the same for all points. Thus, v and a are properties of the rotating object as a whole. With v measured in radians per second and t in seconds, a has units of radians per second squared Arad兾s2 B. Each poi ...
Newtonian Physics - UFDC Image Array 2
Newtonian Physics - UFDC Image Array 2

6 Fields and forces
6 Fields and forces

control – lecture 1
control – lecture 1

... Active element ...
The one-dimensional constant
The one-dimensional constant

Chapter 11 Equilibrium - Farmingdale State College
Chapter 11 Equilibrium - Farmingdale State College

Physics110 Hewitt 12 Edition Solution
Physics110 Hewitt 12 Edition Solution

Units and Dimensions - RIT
Units and Dimensions - RIT

... Units and Dimensions In physics we measure quantities such the length of a room or the mass of an electron. The measurement results in a “physical quantity” consisting of a pure number and a unit. Physicists also discuss dimensions of physical quantities. The System International (SI) is based on 4 ...
The interaction of stationary and moving objects with dusty plasmas
The interaction of stationary and moving objects with dusty plasmas

College Physics: A Strategic Approach, 3rd Edition, AP
College Physics: A Strategic Approach, 3rd Edition, AP

... an external force is exerted on a system such that a component of the force is parallel to its displacement. The process through which the energy is transferred is called work. ...
< 1 ... 4 5 6 7 8 9 10 11 12 ... 229 >

Mass versus weight



In everyday usage, the mass of an object is often referred to as its weight though these are in fact different concepts and quantities. In scientific contexts, mass refers loosely to the amount of ""matter"" in an object (though ""matter"" may be difficult to define), whereas weight refers to the force experienced by an object due to gravity. In other words, an object with a mass of 1.0 kilogram will weigh approximately 9.81 newtons (newton is the unit of force, while kilogram is the unit of mass) on the surface of the Earth (its mass multiplied by the gravitational field strength). Its weight will be less on Mars (where gravity is weaker), more on Saturn, and negligible in space when far from any significant source of gravity, but it will always have the same mass.Objects on the surface of the Earth have weight, although sometimes this weight is difficult to measure. An example is a small object floating in a pool of water (or even on a dish of water), which does not appear to have weight since it is buoyed by the water; but it is found to have its usual weight when it is added to water in a container which is entirely supported by and weighed on a scale. Thus, the ""weightless object"" floating in water actually transfers its weight to the bottom of the container (where the pressure increases). Similarly, a balloon has mass but may appear to have no weight or even negative weight, due to buoyancy in air. However the weight of the balloon and the gas inside it has merely been transferred to a large area of the Earth's surface, making the weight difficult to measure. The weight of a flying airplane is similarly distributed to the ground, but does not disappear. If the airplane is in level flight, the same weight-force is distributed to the surface of the Earth as when the plane was on the runway, but spread over a larger area.A better scientific definition of mass is its description as being composed of inertia, which basically is the resistance of an object being accelerated when acted on by an external force. Gravitational ""weight"" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. This force can be added to by any other kind of force.For example, in the photograph, the girl's weight, subtracted from the tension in the chain (respectively the support force of the seat), yields the necessary centripetal force to keep her swinging in an arc. If one stands behind her at the bottom of her arc and abruptly stops her, the impetus (""bump"" or stopping-force) one experiences is due to acting against her inertia, and would be the same even if gravity were suddenly switched off.While the weight of an object varies in proportion to the strength of the gravitational field, its mass is constant (ignoring relativistic effects) as long as no energy or matter is added to the object. Accordingly, for an astronaut on a spacewalk in orbit (a free-fall), no effort is required to hold a communications satellite in front of him; it is ""weightless"". However, since objects in orbit retain their mass and inertia, an astronaut must exert ten times as much force to accelerate a 10‑ton satellite at the same rate as one with a mass of only 1 ton.On Earth, a swing set can demonstrate this relationship between force, mass, and acceleration. If one were to stand behind a large adult sitting stationary on a swing and give him a strong push, the adult would temporarily accelerate to a quite low speed, and then swing only a short distance before beginning to swing in the opposite direction. Applying the same impetus to a small child would produce a much greater speed.
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report