File - Phy 2048-0002
... 1) The speed of the interacting bodies are a fraction of the speed of light Einstein’s special theory of relativity. 2) The interacting bodies are on the scale of the atomic structure Quantum mechanics I. Newton’s first law: If no net force acts on a body, then the body’s velocity cannot change; ...
... 1) The speed of the interacting bodies are a fraction of the speed of light Einstein’s special theory of relativity. 2) The interacting bodies are on the scale of the atomic structure Quantum mechanics I. Newton’s first law: If no net force acts on a body, then the body’s velocity cannot change; ...
Review 2012
... a. TRUE- Momentum is a vector quantity. Like all vector quantities, the momentum of an object is not fully described until the direction of the momentum is identified. Momentum, like other vector quantities, is subject to the rules of vector operations. b. FALSE- The Joule is the unit of work and en ...
... a. TRUE- Momentum is a vector quantity. Like all vector quantities, the momentum of an object is not fully described until the direction of the momentum is identified. Momentum, like other vector quantities, is subject to the rules of vector operations. b. FALSE- The Joule is the unit of work and en ...
Section 2 Newton`s Law of Universal Gravitation
... Gravitational Force, continued • The gravitational forces that two masses exert on each other are always equal in magnitude and opposite in direction. • This is an example of Newton’s third law of motion. • One example is the Earth-moon system, shown on the next slide. • As a result of these forces, ...
... Gravitational Force, continued • The gravitational forces that two masses exert on each other are always equal in magnitude and opposite in direction. • This is an example of Newton’s third law of motion. • One example is the Earth-moon system, shown on the next slide. • As a result of these forces, ...
pompton lakes high school - Pompton Lakes School District
... Unit Summary: In this unit students will become familiar with the way scientists describe forces and motion in the physical sense. They will become accustomed to performing mathematical equations to find the information necessary to answer questions related to physics. Primary interdisciplinary conn ...
... Unit Summary: In this unit students will become familiar with the way scientists describe forces and motion in the physical sense. They will become accustomed to performing mathematical equations to find the information necessary to answer questions related to physics. Primary interdisciplinary conn ...
Two gliders move freely on an air track with
... a. Suppose that the value of M is small enough that the blocks remain at rest when released. For each of the following forces, determine the magnitude of the force and draw a vector on the block provided to indicate the direction of the force if it is nonzero. i. The normal force N1 exerted on block ...
... a. Suppose that the value of M is small enough that the blocks remain at rest when released. For each of the following forces, determine the magnitude of the force and draw a vector on the block provided to indicate the direction of the force if it is nonzero. i. The normal force N1 exerted on block ...
Chapter 9 Rotational dynamics
... lines. If we suspend the object from the cg as in Fig 9-20c, and release it, the body will remain at rest no matter what its orientation. ...
... lines. If we suspend the object from the cg as in Fig 9-20c, and release it, the body will remain at rest no matter what its orientation. ...
Key equations exercises
... cathode rays consist of negatively charged particles. 2.16 An unknown particle is caused to move between two electrically charged plates, as illustrated in Figure 2.8. Its path is deflected by a smaller magnitude in the opposite direction from that of a beta particle. What can you conclude about ...
... cathode rays consist of negatively charged particles. 2.16 An unknown particle is caused to move between two electrically charged plates, as illustrated in Figure 2.8. Its path is deflected by a smaller magnitude in the opposite direction from that of a beta particle. What can you conclude about ...
Ch 6 Pretest
... b. Momentum is not conserved for a system of objects in a head-on collision. c. Momentum is conserved when two or more interacting objects push away from each other. d. The total momentum of a system of interacting objects remains constant regardless of forces between the objects. ...
... b. Momentum is not conserved for a system of objects in a head-on collision. c. Momentum is conserved when two or more interacting objects push away from each other. d. The total momentum of a system of interacting objects remains constant regardless of forces between the objects. ...
[SESSION-2012-2013] KENDRIYA VIDYALAYA SANGATHAN Zonal Institute of Education & Training
... Kendriya Vidyalayas are the pioneer institutions in the field of Education focusing all round development of the students. Keeping in view of the implementation of CCE it is desired to prepare study/ support material for Class IX to guide the students in the right direction and to equip the students ...
... Kendriya Vidyalayas are the pioneer institutions in the field of Education focusing all round development of the students. Keeping in view of the implementation of CCE it is desired to prepare study/ support material for Class IX to guide the students in the right direction and to equip the students ...
Mass versus weight
In everyday usage, the mass of an object is often referred to as its weight though these are in fact different concepts and quantities. In scientific contexts, mass refers loosely to the amount of ""matter"" in an object (though ""matter"" may be difficult to define), whereas weight refers to the force experienced by an object due to gravity. In other words, an object with a mass of 1.0 kilogram will weigh approximately 9.81 newtons (newton is the unit of force, while kilogram is the unit of mass) on the surface of the Earth (its mass multiplied by the gravitational field strength). Its weight will be less on Mars (where gravity is weaker), more on Saturn, and negligible in space when far from any significant source of gravity, but it will always have the same mass.Objects on the surface of the Earth have weight, although sometimes this weight is difficult to measure. An example is a small object floating in a pool of water (or even on a dish of water), which does not appear to have weight since it is buoyed by the water; but it is found to have its usual weight when it is added to water in a container which is entirely supported by and weighed on a scale. Thus, the ""weightless object"" floating in water actually transfers its weight to the bottom of the container (where the pressure increases). Similarly, a balloon has mass but may appear to have no weight or even negative weight, due to buoyancy in air. However the weight of the balloon and the gas inside it has merely been transferred to a large area of the Earth's surface, making the weight difficult to measure. The weight of a flying airplane is similarly distributed to the ground, but does not disappear. If the airplane is in level flight, the same weight-force is distributed to the surface of the Earth as when the plane was on the runway, but spread over a larger area.A better scientific definition of mass is its description as being composed of inertia, which basically is the resistance of an object being accelerated when acted on by an external force. Gravitational ""weight"" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. This force can be added to by any other kind of force.For example, in the photograph, the girl's weight, subtracted from the tension in the chain (respectively the support force of the seat), yields the necessary centripetal force to keep her swinging in an arc. If one stands behind her at the bottom of her arc and abruptly stops her, the impetus (""bump"" or stopping-force) one experiences is due to acting against her inertia, and would be the same even if gravity were suddenly switched off.While the weight of an object varies in proportion to the strength of the gravitational field, its mass is constant (ignoring relativistic effects) as long as no energy or matter is added to the object. Accordingly, for an astronaut on a spacewalk in orbit (a free-fall), no effort is required to hold a communications satellite in front of him; it is ""weightless"". However, since objects in orbit retain their mass and inertia, an astronaut must exert ten times as much force to accelerate a 10‑ton satellite at the same rate as one with a mass of only 1 ton.On Earth, a swing set can demonstrate this relationship between force, mass, and acceleration. If one were to stand behind a large adult sitting stationary on a swing and give him a strong push, the adult would temporarily accelerate to a quite low speed, and then swing only a short distance before beginning to swing in the opposite direction. Applying the same impetus to a small child would produce a much greater speed.