Momentum and Impulse notes
... The world’s most massive train ran in South Africa in 1989. Over 7 km long, the train traveled 861.0 km in 22.67 h. Imagine that the distance was traveled in a straight line north. If the train’s average momentum was 7.32 x 108 kg•m/s to the north, what was its mass? ...
... The world’s most massive train ran in South Africa in 1989. Over 7 km long, the train traveled 861.0 km in 22.67 h. Imagine that the distance was traveled in a straight line north. If the train’s average momentum was 7.32 x 108 kg•m/s to the north, what was its mass? ...
POP4e: Ch. 1 Problems
... day. If you had a sensitive enough bathroom scale, would you appear to weigh more at night than during the day? ...
... day. If you had a sensitive enough bathroom scale, would you appear to weigh more at night than during the day? ...
LarCalc9_ch07_sec5 - Seminole State College
... If q1 and q2 are given in electrostatic units and d in centimeters, F will be in dynes for a value of k = 1. ...
... If q1 and q2 are given in electrostatic units and d in centimeters, F will be in dynes for a value of k = 1. ...
Questions - Physics and Engineering Physics
... 3. Only a basic scientific calculator (e.g. Texas Instruments TI-30X series, Hewlett-Packard HP 10s or 30S) may be used. Graphing or programmable calculators, or calculators with communication capability, are not allowed. 4. Enter your name and student number on the cover of the test paper and check ...
... 3. Only a basic scientific calculator (e.g. Texas Instruments TI-30X series, Hewlett-Packard HP 10s or 30S) may be used. Graphing or programmable calculators, or calculators with communication capability, are not allowed. 4. Enter your name and student number on the cover of the test paper and check ...
Newton`s Law of Universal Gravitation The greatest moments in
... We know from our earlier analysis that an object can only move in circular motion if there is a net force directed towards the center of that circle. If no such force were present, it would move in a straight line, not in a circle. We also know t ...
... We know from our earlier analysis that an object can only move in circular motion if there is a net force directed towards the center of that circle. If no such force were present, it would move in a straight line, not in a circle. We also know t ...
1. Force a
... constant that must be fixed according to the units one is using. If the masses are measured in kg and the distance between them is measured in m, then Newton’s so-called gravitational constant takes the value G = 6.67 x 10-11 m3 kg-1 s-2. For terrestrial purposes, i.e. the gravitational attraction o ...
... constant that must be fixed according to the units one is using. If the masses are measured in kg and the distance between them is measured in m, then Newton’s so-called gravitational constant takes the value G = 6.67 x 10-11 m3 kg-1 s-2. For terrestrial purposes, i.e. the gravitational attraction o ...
Fall Final Review 15-16 File
... Understand the definition of a vector and a scalar and differentiate between the two Use trigonometry to add and resolve vectors Understand and apply the definition of a projectile Draw / recognize the free body diagrams and motion diagrams of a projectile Calculate the range (horizontal distance) o ...
... Understand the definition of a vector and a scalar and differentiate between the two Use trigonometry to add and resolve vectors Understand and apply the definition of a projectile Draw / recognize the free body diagrams and motion diagrams of a projectile Calculate the range (horizontal distance) o ...
HW #7
... cement floor. The maximum force of static friction is fsMAX = µs FN while the force of kinetic friction is f k = µ k FN . As long as the crate is on the cement floor, we can conclude that the magnitude of the maximum static frictional force acting on the crate will always be twice the magnitude of t ...
... cement floor. The maximum force of static friction is fsMAX = µs FN while the force of kinetic friction is f k = µ k FN . As long as the crate is on the cement floor, we can conclude that the magnitude of the maximum static frictional force acting on the crate will always be twice the magnitude of t ...
d = 0.5 gt 2
... cover four times (22) the distance; the total distance traveled after two seconds is four times the total distance traveled after one second. If an object travels for three times the time, then it will cover nine times (32) the distance; the distance traveled after three seconds is nine times the di ...
... cover four times (22) the distance; the total distance traveled after two seconds is four times the total distance traveled after one second. If an object travels for three times the time, then it will cover nine times (32) the distance; the distance traveled after three seconds is nine times the di ...
Mass versus weight
In everyday usage, the mass of an object is often referred to as its weight though these are in fact different concepts and quantities. In scientific contexts, mass refers loosely to the amount of ""matter"" in an object (though ""matter"" may be difficult to define), whereas weight refers to the force experienced by an object due to gravity. In other words, an object with a mass of 1.0 kilogram will weigh approximately 9.81 newtons (newton is the unit of force, while kilogram is the unit of mass) on the surface of the Earth (its mass multiplied by the gravitational field strength). Its weight will be less on Mars (where gravity is weaker), more on Saturn, and negligible in space when far from any significant source of gravity, but it will always have the same mass.Objects on the surface of the Earth have weight, although sometimes this weight is difficult to measure. An example is a small object floating in a pool of water (or even on a dish of water), which does not appear to have weight since it is buoyed by the water; but it is found to have its usual weight when it is added to water in a container which is entirely supported by and weighed on a scale. Thus, the ""weightless object"" floating in water actually transfers its weight to the bottom of the container (where the pressure increases). Similarly, a balloon has mass but may appear to have no weight or even negative weight, due to buoyancy in air. However the weight of the balloon and the gas inside it has merely been transferred to a large area of the Earth's surface, making the weight difficult to measure. The weight of a flying airplane is similarly distributed to the ground, but does not disappear. If the airplane is in level flight, the same weight-force is distributed to the surface of the Earth as when the plane was on the runway, but spread over a larger area.A better scientific definition of mass is its description as being composed of inertia, which basically is the resistance of an object being accelerated when acted on by an external force. Gravitational ""weight"" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. This force can be added to by any other kind of force.For example, in the photograph, the girl's weight, subtracted from the tension in the chain (respectively the support force of the seat), yields the necessary centripetal force to keep her swinging in an arc. If one stands behind her at the bottom of her arc and abruptly stops her, the impetus (""bump"" or stopping-force) one experiences is due to acting against her inertia, and would be the same even if gravity were suddenly switched off.While the weight of an object varies in proportion to the strength of the gravitational field, its mass is constant (ignoring relativistic effects) as long as no energy or matter is added to the object. Accordingly, for an astronaut on a spacewalk in orbit (a free-fall), no effort is required to hold a communications satellite in front of him; it is ""weightless"". However, since objects in orbit retain their mass and inertia, an astronaut must exert ten times as much force to accelerate a 10‑ton satellite at the same rate as one with a mass of only 1 ton.On Earth, a swing set can demonstrate this relationship between force, mass, and acceleration. If one were to stand behind a large adult sitting stationary on a swing and give him a strong push, the adult would temporarily accelerate to a quite low speed, and then swing only a short distance before beginning to swing in the opposite direction. Applying the same impetus to a small child would produce a much greater speed.