The Force! - Cobb Learning
... INERTIA the tendency of an object to resist changes in acceleration ...
... INERTIA the tendency of an object to resist changes in acceleration ...
Standard Weights and Measures
... scientific definitions. Even in the era of modern science, standards till recently used to be defined by artifacts. It is only in the last few decades that we have gone over to definitions based on fundamental constants of nature. This has made the standards universally reproducible. The present sta ...
... scientific definitions. Even in the era of modern science, standards till recently used to be defined by artifacts. It is only in the last few decades that we have gone over to definitions based on fundamental constants of nature. This has made the standards universally reproducible. The present sta ...
Exam 2 solutions - BYU Physics and Astronomy
... Problem 14. You are a passenger in a car and not wearing your seat belt. Without increasing or decreasing its speed, the car makes a sharp left turn, and you find yourself colliding with the right-hand door. Which is the correct analysis of the situation according to Newton’s laws? a. Before and aft ...
... Problem 14. You are a passenger in a car and not wearing your seat belt. Without increasing or decreasing its speed, the car makes a sharp left turn, and you find yourself colliding with the right-hand door. Which is the correct analysis of the situation according to Newton’s laws? a. Before and aft ...
CST Review - cloudfront.net
... A tuning fork is used to produce sound waves with a frequency of 440 hertz. The waves travel through the air at 344 m/s. What is the wavelength of the sound waves? A 0.15 m B 0.39 m C 0.78 m D 1.28 m ...
... A tuning fork is used to produce sound waves with a frequency of 440 hertz. The waves travel through the air at 344 m/s. What is the wavelength of the sound waves? A 0.15 m B 0.39 m C 0.78 m D 1.28 m ...
Chapter 13 Periodic Motion Simple Harmonic Motion Amplitude
... x is the displacement of the object from its equilibrium position (at equilibrium x = 0) The negative sign indicates that the force is always directed opposite to the displacement Mass Attached to a Spring: The force always acts toward the equilibrium position (restoring force F) A: When x ...
... x is the displacement of the object from its equilibrium position (at equilibrium x = 0) The negative sign indicates that the force is always directed opposite to the displacement Mass Attached to a Spring: The force always acts toward the equilibrium position (restoring force F) A: When x ...
Mass versus weight
In everyday usage, the mass of an object is often referred to as its weight though these are in fact different concepts and quantities. In scientific contexts, mass refers loosely to the amount of ""matter"" in an object (though ""matter"" may be difficult to define), whereas weight refers to the force experienced by an object due to gravity. In other words, an object with a mass of 1.0 kilogram will weigh approximately 9.81 newtons (newton is the unit of force, while kilogram is the unit of mass) on the surface of the Earth (its mass multiplied by the gravitational field strength). Its weight will be less on Mars (where gravity is weaker), more on Saturn, and negligible in space when far from any significant source of gravity, but it will always have the same mass.Objects on the surface of the Earth have weight, although sometimes this weight is difficult to measure. An example is a small object floating in a pool of water (or even on a dish of water), which does not appear to have weight since it is buoyed by the water; but it is found to have its usual weight when it is added to water in a container which is entirely supported by and weighed on a scale. Thus, the ""weightless object"" floating in water actually transfers its weight to the bottom of the container (where the pressure increases). Similarly, a balloon has mass but may appear to have no weight or even negative weight, due to buoyancy in air. However the weight of the balloon and the gas inside it has merely been transferred to a large area of the Earth's surface, making the weight difficult to measure. The weight of a flying airplane is similarly distributed to the ground, but does not disappear. If the airplane is in level flight, the same weight-force is distributed to the surface of the Earth as when the plane was on the runway, but spread over a larger area.A better scientific definition of mass is its description as being composed of inertia, which basically is the resistance of an object being accelerated when acted on by an external force. Gravitational ""weight"" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. This force can be added to by any other kind of force.For example, in the photograph, the girl's weight, subtracted from the tension in the chain (respectively the support force of the seat), yields the necessary centripetal force to keep her swinging in an arc. If one stands behind her at the bottom of her arc and abruptly stops her, the impetus (""bump"" or stopping-force) one experiences is due to acting against her inertia, and would be the same even if gravity were suddenly switched off.While the weight of an object varies in proportion to the strength of the gravitational field, its mass is constant (ignoring relativistic effects) as long as no energy or matter is added to the object. Accordingly, for an astronaut on a spacewalk in orbit (a free-fall), no effort is required to hold a communications satellite in front of him; it is ""weightless"". However, since objects in orbit retain their mass and inertia, an astronaut must exert ten times as much force to accelerate a 10‑ton satellite at the same rate as one with a mass of only 1 ton.On Earth, a swing set can demonstrate this relationship between force, mass, and acceleration. If one were to stand behind a large adult sitting stationary on a swing and give him a strong push, the adult would temporarily accelerate to a quite low speed, and then swing only a short distance before beginning to swing in the opposite direction. Applying the same impetus to a small child would produce a much greater speed.