• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
AP B MC Midterm Answers 2004
AP B MC Midterm Answers 2004

... a) It is equal to h/2 b) It is equal to h/4 c) It is equal to h/2 d) It is equal to h e) It is between zero and h; height depends on how much energy is lost to friction. 34. A ball falls straight down through the air under the influence of gravity. There is a retarding force F on the ball with magn ...
Total Time
Total Time

... magnitude. A newton (N) is the unit used to describe the magnitude, or size, of a force. What two properties do all forces have? ...
Force and acceleration Chapter_3_Lesson_1
Force and acceleration Chapter_3_Lesson_1

... Mass and Acceleration • If you throw a softball and a baseball as hard as you can, why don’t they have the same speed? • The difference is due to their masses. • If it takes the same amount of time to throw both balls, the softball would have less. • Force, mass, acceleration and acceleration are r ...
Newton’s Laws of Motion
Newton’s Laws of Motion

AP Physics 1 Circular Motion Multiple
AP Physics 1 Circular Motion Multiple

... b. Derive an expression for v min the minimum speed the ball can have at point Z without leaving the circular path. c. The maximum tension the string can have without breaking is T max Derive an expression for v max , the maximum speed the ball can have at point Q without breaking the string. d. Sup ...
1 - Newton`s laws - Ms. Gamm
1 - Newton`s laws - Ms. Gamm

... In order to have forces cancel out; they have to be different forces. An example of this would be if we had two horses hitched to the same wagon pulling in opposite directions. The forces the horses exert would then cancel out and the wagon wouldn’t move. These would be two separate forces that do ...
dynamics intro power..
dynamics intro power..

... If an apple is sitting on Mrs. Evans’ desk, it will remain there until the desk is removed (so gravity acts on it) or someone lifts it up (force). If a car is driving along a straight road at 100km/h, it will continue to do so (given the car still has gas!) until the brakes are applied (force), ther ...
Concept of Force and Newton`s Laws of Motion Concept of
Concept of Force and Newton`s Laws of Motion Concept of

scalar: quantity described by magnitude (size) only vector: quantity
scalar: quantity described by magnitude (size) only vector: quantity

Inv 3
Inv 3

... her downward and the seat pushes her upward and that the net vertical force is zero, thus resulting in no upward or downward acceleration. In the horizontal direction, the back of the seat pushes her forward and the steering wheel pushes her backward. Compare the strengths of the two horizontal forc ...
ch04_LecturePPT
ch04_LecturePPT

A) kg × m s2 B) kg × m 2 C) kg × m s2 D) kg2 × m s2 1. A force of 1
A) kg × m s2 B) kg × m 2 C) kg × m s2 D) kg2 × m s2 1. A force of 1

Wednesday, June 24, 2015
Wednesday, June 24, 2015

Document
Document

06 FORCES
06 FORCES

Skydiving: falling with constant velocity
Skydiving: falling with constant velocity

... (your velocity increases) • In an elevator when it starts to go up (you are at rest then start moving) • In a car going around a curve at constant speed (the direction of your velocity changes) • You are on a bus that is slowing down (your velocity decreases) • you are in an elevator and the cable b ...
Chapter 6 Work & Energy
Chapter 6 Work & Energy

TEST 2 (96-97) Laws of Motion/5-7
TEST 2 (96-97) Laws of Motion/5-7

... force holding it in the hole is 70.0 N straight downward, how much force must the worker apply to the rope to pull the stake upward at a constant speed? (Do not concern yourself with normal forces here.) ...
Work Powerpoint
Work Powerpoint

05. RotationalReg
05. RotationalReg

... the Earth and drop someone in. • What is the person’s initial acceleration? • What is the person’s acceleration at center of the Earth? • What happens to his acceleration as he falls towards the center? • What happens to his acceleration after he passes the center? • Does he reach the other side? If ...
File
File

Force and Motion
Force and Motion

F = ma
F = ma

A Worksheet not slide backwards relative to the train? 8) A 1.20 x 10
A Worksheet not slide backwards relative to the train? 8) A 1.20 x 10

Powerpoint
Powerpoint

... future. Objects only know what is acting directly on them right now Newton's 1st Law An object that is at rest will remain at rest and an object that is moving will continue to move in a straight line with constant speed, if and only if the sum of the forces acting on that object is zero. Newton's 3 ...
< 1 ... 89 90 91 92 93 94 95 96 97 ... 209 >

Buoyancy



In science, buoyancy (pronunciation: /ˈbɔɪ.ənᵗsi/ or /ˈbuːjənᵗsi/; also known as upthrust) is an upward force exerted by a fluid that opposes the weight of an immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. This pressure difference results in a net upwards force on the object. The magnitude of that force exerted is proportional to that pressure difference, and (as explained by Archimedes' principle) is equivalent to the weight of the fluid that would otherwise occupy the volume of the object, i.e. the displaced fluid.For this reason, an object whose density is greater than that of the fluid in which it is submerged tends to sink. If the object is either less dense than the liquid or is shaped appropriately (as in a boat), the force can keep the object afloat. This can occur only in a reference frame which either has a gravitational field or is accelerating due to a force other than gravity defining a ""downward"" direction (that is, a non-inertial reference frame). In a situation of fluid statics, the net upward buoyancy force is equal to the magnitude of the weight of fluid displaced by the body.The center of buoyancy of an object is the centroid of the displaced volume of fluid.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report