
Mathematics 220 Homework for Week 7 Due March 6 If
... Because m, n and m + 1 are positive, from the above inequality we conclude that m < n < m + 1. But there is no integer which is strictly between m and m + 1. This contradicts the assumption that n is an integer and proves the statement. 5.36 Let a, b ∈ R. Prove that if ab 6= 0, then a 6= 0 by using ...
... Because m, n and m + 1 are positive, from the above inequality we conclude that m < n < m + 1. But there is no integer which is strictly between m and m + 1. This contradicts the assumption that n is an integer and proves the statement. 5.36 Let a, b ∈ R. Prove that if ab 6= 0, then a 6= 0 by using ...