Download Document 8940615

Document related concepts
no text concepts found
Transcript
Microlensing: Marching Toward a Complete Census of Cold Exoplanet Popula;on Subo Dong Ins;tute for Advanced Study Collaborators: Andy Gould (Ohio State) et al., [MicroFUN], Andrzej Udalski (Warsaw) et al., [OGLE], J.P. Beaulieu (IAP) et al., [PLANET], Ian Bond (Massey) et al, [MOA], Keith Horne (St. Andrews) et al., [RoboNET & LCGOT], Mar;n Dominik (St. Andrews) et al., [MiNDSTEp] Planet: Science, not yet solid Physics •  “Almost every predic7on by theorists about planetary forma7on has been wrong.” -­‐-­‐ Sco? Tremaine •  “All science is either physics or stamp collec7ng.” -­‐-­‐Ernest Rutherford Stamp Collec;ng Microlensing Planets Planetary Caus-cs (Gould & Loeb) Resonant Caus-cs (Mao & Paczynski) Central Caus-cs (Griest & Safizadeh)
Beaulieu et al 2006 ~5.5 MEarth Bond et al 2004 Apeak ~ 12 ~1000 MEarth Apeak ~ 14 Gould et al 2006 ~13 MEarth Gaudi et al 2008 Apeak~ 8 ~86 MEarth Apeak ~ 290 Apeak ~ 40 ~1200 MEarth Ba;sta et al., 2011 Muraki et al., 2011 ~14 MEarth Apeak ~ 8 Apeak ~ 3 ~830 MEarth Sumi et al. 2010 ~22 MEarth Udalski et al 2005; Dong et al 2009 Apeak ~ 800 Dong et al in prep ~50 MEarth Apeak ~ 500 Pioneered by: Mao & Paczynski (1991) Survey-­‐Follow-­‐up: Gould & Loeb (1992) -­‐-­‐ Most sensi;ve to planets near rE (= θE DL ~ 3 AU) –> Jupiter at a Jupiter-­‐like orbit is easiest to spot! -­‐-­‐ Planets across the galaxy (disk + bulge) planet lens Short ;mescale: tE =
θE
t planet /t E ~
µLS ~ 30days
M planet / M star = q
Intensive 24hr Monitoring of a Selec;ve Number of Events out of thousands of events from OGLE & MOA surveys Credit: S. Gaudi Mass ra;o q and projected separa;on d directly derived from light curve modeling Extrasolar Jupiter vs. Neptune Gaudi et al. (2002) – NO planets from 43 events well observed by PLANET collabora;on (1995-­‐2000) :< ~30% Jupiter at ~1.5 -­‐ 4 AU First Gould & Loeb type planet: A cool super Earth: ~5.5 MEarth, 2.6 AU, T~50K! OGLE-­‐2005-­‐BLG-­‐390 (Beaulieu et al. 2006) Small Number sta;s;cs, but implies: Cold Neptunes Are Common! ~40% (16% -­‐ 69% at 90% conf) (Gould et al. 2006) ~52% (23% -­‐ 74%) (Cassan et al. 2011) Caus;cs: planetary, central & resonant d ~ 0.91, q ~ 0.013, Ba;sta et al., 2011, A&A, 529, 102 Central Caus;cs and High-­‐magnifica;on Events High Magnifica;on Event [A > ~50] (Central Caus;c Perturba;on) Griest & Safizadeh 1998 •  Great sensi;vity to planets at all angles over the peak (Detec;on & Exclusion); mul;-­‐planet (Gaudi, et al, 1998, ApJL, 502, L33) • Rela;vely easy to monitor as the peak can be alerted in advance Planetary Detec;on Efficiency of Extremely High-­‐magnifica;on Event OGLE-­‐2004-­‐BLG-­‐343 Dong et al, 2006, ApJ, 642, 842 -­‐-­‐ Comments by Virginia Trimble et al, Astrophysics in 2006: “But we begin with honest apprecia-on of honest authors (ApJ 642, 842) who explain that ‘due to human error, intensive monitoring did not begin un-l 43 minutes aSer peak magnifica-on’ …” Amax ~ 3000, no planet signatures What planets could have been detected? Physical Detec;on Efficiency Dong et al, 2006, ApJ, 642, 842 Lesson Learned! 1 MJup 1 MNep 1 MEarth Amax~ 1600 Yee, J. et al, 2009, ApJ, 703, 2082 Microlensing Follow-­‐Up Network (MicroFUN), led by Andy Gould (OSU) -­‐-­‐ The Network on Which the Sun Never Rises (the Bulge hopefully Never Sets) Z = 2.752 “It just shows that you can be a mother, you can work full-­‐
;me, and you can s;ll go out there and find planets” – Jennie McCormick, “Astronomy Magazine Grant Chris;e, Stardome, Auckland, New Zealand 0.4m telescope Berto Monard, Bronberg Obs., South Africa The most massive M-­‐dwarf planet? Lens + Source Microlens Parallax + HST photometry & astrometry Discovery: Udalski, A. et al. 2005, ApJL, 628, 109 M = 0.46 ± 0.04 M Dlens = 3.2 ± 0.4 kpc Characteriza;on: Dong, S. et al. 2009, ApJ, 695, 970 Mp = 3.8 ± 0.4 MJ at 3.6 ± 0.2 AU The most massive M-­‐dwarf planet? OGLE-­‐2005-­‐BLG-­‐071Lb
M = 0.46 ± 0.04 M Dlens = 3.2 ± 0.4 kpc Mp = 3.8 ± 0.4 MJ at 3.6 ± 0.2 AU "Dong, S. et al. 2009, ApJ, 695, 970 Too massive to form for M-­‐dwarfs in core-­‐accre;on (Laughlin 2004) Possibly poin;ng to Gravita;onal Instability (Boss 2002, 2006) More massive Jupiters around M-­‐dwarfs MOA-­‐2009-­‐BLG-­‐387Lb: Host -­‐-­‐ M* ~ 0.19 Msun; Planet – Mp ~ 2.6 MJ a ~ 2 AU Ba-sta et al., 2011, A&A, 529, 102 Planet Discovery for Theorists Alert Follow-­‐up Planet!!! 15 But in reality … Daily New Event
s Survey Groups: OGLE/MOA Anomaly/High-­‐mag Alerts Anomalous? Planet? Binary? Systema;c? Real-­‐;me Modeling “Homebase”: Pseudo Observers Photometry, CMD Other Follow-­‐up groups (PLANET/
RoboNET/
MindSTEP) Photometry Sharing High-­‐magnifica;on? Peak Mag? When? Need New Observa;ons to improve predic;on? Real-­‐;me Data Reduc;on DoPHOT, DIA Observing Instruc;ons via Email, Phone, Tex;ng… High-­‐res Spectra? Magellan, Keck, VLT MicroFUN Observers Pre-­‐processed Images via FTP, Status report Daily Instruc;ons by 2pm Emergency Schedule Change by phone Daily CTIO SMARTS queue Observa;ons Discovery of MOA-­‐2009-­‐BLG-­‐387Lb Jul 28, 2009, 5:23pm MOA-­‐2009-­‐BLG-­‐408 is anomalous MOA-2009-BLG-408
15
MOA
MOA (NZ) 16
Imag 17
18
5040.8
-0.1
-0.05
5041
HJD -­‐ 2450000 5041.2
Best-­‐fit model: mass ra;o q ~ 0.1 0
5041.4
Discovery of MOA-­‐2009-­‐BLG-­‐387Lb MOA-­‐2009-­‐BLG-­‐408 is a binary MOA-2009-BLG-408
MOA-2009-BLG-408
14
15
MOA (NZ) Wise (Israel) Bronberg (SA) MOA
MOA
WC18
BRONBERG
15
16
16
17
Binary-­‐lens model verified by 18
observa;ons from Israel and 17
South Africa a few hour later. -0.1
Target dropped! -0.05
5040.8
5040.8
5041
5041
5041.2
5041.2
5041.4 5041.6
5041.4
I(MO
Discovery of MOA-­‐2009-­‐BLG-­‐387Lb 17.5
18
Jul 28, 2009, 7:27pm 18.5
5040.6
5040.8
5041
MOA-­‐2009-­‐BLG-­‐387 is also anomalous! 5041.2
16
I(MOA)
17
18
19
5036
5038
5040
5041.4
16
I(MOA)
17
18
19
5036
5038
Cell phone Sco| Gaudi 5040
d ~ 0.98 mass ra;o q ~ 0.006 angle α ~ -­‐90 80 CPUs Subo First crude model: d: 0.93, q: 0.006, α ~ -­‐87 16
I(MOA)
17
18
19
5036
5038
5040
Cell phone d ~ 0.98 mass ra;o q ~ 0.006 angle α ~ -­‐90 Sco| Gaudi 0.4
0.2
0
-0.2
-0.4
-0.4
-0.2
0
0.2
0.4
80 CPUs Subo First crude model: d: 0.93, q: 0.006, α ~ -­‐87 Discovery of MOA-­‐2009-­‐BLG-­‐387Lb Aug 3, 2009: caus;c entrance seen from SAAO (South Africa)! Predicted: HJD’ = 5047.222 Observa;on: HJD’ = 5047.233 More massive Jupiters around M-­‐dwarfs MOA-­‐2009-­‐BLG-­‐387Lb: Host -­‐-­‐ M* ~ 0.19 Msun; Planet – Mp ~ 2.6 MJ a ~ 2 AU BaBsta et al., 2011, A&A, 529, 102 2010+: more intensive near real-­‐;me modeling by more people (V Bozza, C Han, etc) High-­‐mag events are sensi;ve to mul;ple planets •  Gaudi, et al, 1998, ApJL, 502, L33 The first Jupiter/Saturn Analog: OGLE-­‐2006-­‐BLG-­‐109 •  A scaled version of our Solar System •  b: ~0.71 Jupiter Mass at ~2.3 AU c: ~0.27 Jupiter Mass at ~4.6 AU •  M* ~ 0.5 M Gaudi et al. 2008, Science, 319, 927 More mul;-­‐planet systems from microlensing to be announced! MicroFUN From Jennie McCormick, Farm Cove, New Zealand Fun with mul;-­‐site observa;ons Credit: Grant Chris;e Terrestrial Parallax COSMOS 1490 Earth al;tude: 19110.4734 km OGLE-­‐2007-­‐BLG-­‐224, An old thick-­‐disk brown dwarf M=0.056 +/-­‐ 0.004 Msun; D = 525 +/-­‐ 40 pc Expected: H ~ 25.7 mag Old Thick-­‐disk Brown dwarf? Gould, A., et al., 2009, ApJL, 698, L147 First Determina;on of Planet Frequency beyond the Snow Line •  13 High-­‐mag Events (A > 200) during 2005-­‐2008 •  A “Controlled Experiment” – follow-­‐up not dependent on planet recogni;on Gould, Dong, Gaudi et al., 2010, ApJ, 720, 1073 Gould, Dong, Gaudi et al., 2010, ApJ, 720, 1073 Frequency of cold giants (Neptune – Jupiter) Mass ra;o range: 6 planet out of 13 high-­‐mag events From 2005-­‐2008 Gould, Dong, Gaudi et al., 2010, ApJ, 720, 1073 A Basic Ques;on: What is the frequency of the Solar System??? ~15% Gould, Dong, Gaudi et al., 2010, ApJ, 720, 1073 One or more
A. Cassan
, D. Kubas
, J.-P. Beaulieu
, M. Dominik , K. Hor
microlensin
P. Bennett , M. D
A. Williams , U. G. Jørgensen , A. Udalski
Frequency of cold giants (Neptune –, JD.upiter) 1,2,3
1,8
1,2,4
1,2,25
1,9
10,11
1,5
1,12
A. Cole1,6, Ch. Coutures1,2, K. H. Cook1,15, S. Dieters1,6, D. Dominis Pr
1,2,3
1,2,4
,J
, R.Cassan
Martin1,8, ,D.
K.Kubas
R. Pollard
N. Kains1,19, S. Kane1,20, J.-B. Marquette1,2A.
1,8
,10,11
U. G.
Jørgense
A., Williams
M. Kubiak
, R.
Polesk
M. Zub1,3, T. Sumi21,22, M. K. Szymański10,11
1,6
10,11,24
A. Cole , Ch. Coutures1,2, K.
& Ł. Wyrzykowski
Mass ra;o rN.
ange: Kains1,19, S. Kane1,20, J.-B.
M. Zub1,3, T. Sumi21,22, M. K.
6 planet out 3 high-­‐mag e10,11,24
vents & oŁ.f 1
Wyrzykowski
Most known extrasolar planets (exoplanets)
have been discovered with
From 2
005-­‐2008 3
dete
using the radial velocity1,2 or transit
Botheare
biased
Gould, methods.
Dong, Gaudi t al., towards planets that are relatively close to their
parent stars,
and mas
2010, ApJ, Most
720, 1known
073 extrasolar planets
the radial
velocity
or
studies find that around 17–30% (refs 4, 5) ofusing
solar-like
stars host
a 1,2349L
6–9
towards
that are relati
planet. Gravitational microlensing , on the
other planets
hand, probes
studies
find that
around 17–30
planets that are further away from their stars.
Recently,
a popu21
20.
Kubas,
D. et al. L
giants found that
fewer
33%
M unbound
dwarfs have
a Jupiter-like
planet.
Gravitational
microlen
lation
of than
planets
thatofare
or
very
far
from
their
stars
was
3 planets following PLANET 390L. Astron. As
planets
that
are
further
away
21
10
20.
Kubas,
D.
et
al. Limits
onet
add
AU
,
and
even
lower
limits
of
18%
have
been
planet
between
1.524
giants found that
fewer thanby33%
of M dwarfs. These
havestrategy a planets
Jupiter-like
discovered
microlensing
are
at
least
as
numerous
21.
Gaudi,
B.
S.
a1
f
rom 2
002-­‐2007 390L.
Astron.
Astrophys.
483,
29,30
lation
of
planets
that
are
unbo
10 of our
. These
limits
are
compatible
with
measurement
of analysis
reported
an
AU
, and
even
lower Way
limits
18%we
have
been
planet between
1.524
as
the
stars
in
the
Milky
. Here
report
a statistical
21. Gaudi,
B. S.companions:
et al.of
Microlensin
10
discovered
by
microlensing
.
T
Cassan ,
K
ubas, B
eaulieu, e
t a
l. z2
29,30
463–499
(2002
. These
limits
are
compatible
with
our
measurement
of
reported
companions:
analysis
of
5
ye
% for masses
ranging
from
Saturn
to
10
times
Jupiter,
in
the
same
5{2
microlensing data (gathered in 2002–07) thatas
reveals
theinfraction
ofWay
10
z2
the
stars
the(2002).
Milky
.H
22.
Einstein,
A. Lens
463–499
2012, N
ature, 4
81, 1
67 %
for
masses
ranging
from
Saturn
to
10
times
Jupiter,
in
the
same
5
orbit
{2range.
bound planets 0.5–10 AU (Sun–Earth distance)
from
stars.
We
22. their
Einstein,
A.field.
Lens-like
action
o
Science
84
microlensing
data
(gathered
in
orbit
range.
z6
field. 23.
Science
84, 506–507
(1
From our derived
mass
function,
we estimate planets
that
within
M. Sto
findplanetary
that 17 mass
% of
stars
host Jupiter-mass
(0.3–10
M0.5–10
where
bound
planets
AU (Sun–
J, Dominik,
From our derived planetary{9
function, we estimate
that within
23. Dominik,
M.
Stochastic
distri
1
z6
galactic
microle
AU (that is,
for
a
wider
range
of
orbital
separations
than
pre0.5210
M
5
318
M
and
M
is
Earth’s
mass).
Cool
Neptunes
(10–30
M
)
find
that
17
%
of
stars
host
Ju
J
›
›
›
galactic
microlensing
events.
{9
range of orbital separations than pre0.5210 AU (that is, for a widerz6
24. Cassan, A. An alt
24.
Cassan,
A.respecAnM
alternative
para
Between 0
.5-­‐10 A
U, z6
%
of
stars
host
a
‘Jupiter’
(0.3210
M
)
vious
studies),
on
average
17
M
5
318
M
and
Earth’
and
super-Earths
(5–10
M
)
are
even
more
common:
their
J
›
› is
J
{9
›
viousz22
studies), on average 17{9 % of stars host a ‘Jupiter’ (0.3210 MJ)
Astron.
Astrophy
Astron. Astrophys.
491,
587–5
z22
z35
z22% of stars
and
super-Earths
(5–10
M
{29
host
Neptune-like
planets
(10230
M
).
Taking
and
›
tive
abundances
per
star
are
52
%
and
62
%.
We
conclude
that
25.
Sumi,
T.
et
al.) Aar
›
%
of
stars
host
Neptune-like
planets
(10230
M
).
Taking
and5252
{29
{37
25.
Sumi,
T.
et
al.
A
cold
Neptune
›
{29
z
Mass
ass, M(M
(M
⊕)
+ Today: High-­‐mag Events 0
0.2
0.4
0.6
Today: High-­‐mag Events Planetary caus;cs: Huge Untapped Poten;al! 0
0.2
0.4
0.6
Tap the poten;al of planetary caus;c –  Dump Survey + Follow-­‐up •  High-­‐mag events: limited in number •  Planetary caus;cs: Hec-c, Resource-­‐intensive, Complicated selec-on bias –  Pure Wide-­‐Field Survey and Each Lightcurve has High cadence with 24hr con;nuous coverage! •  No Human Interven;on, Perfect for sta;s;cs! •  Several Orders of Magnitude larger detec;on rate. •  Capable of finding Free-­‐floa;ng planets. –  Alterna;ve Strategy •  Automa;c anomaly iden;fica;on (SIGNALMEN, Dominik et al.) Redder Bandpass is Be|er Go for small sources! Benne| & Rhie 1996 Bulge is very crowded Credit: OGLE Every Image is like HST! OGLE image with 0.5” seeing Hubble ACS HRC The Ideal Instrument: Space-­‐based Wide-­‐Field (IR) imager Weak Lensing for Dark Energy! WFIRST (and Euclid @ Europe) Dark Energy + Microlensing Planet + General IR survey “… WFIRST will carry out a powerful extrasolar planet search by monitoring a large sample of stars in the central bulge of the Milky Way for small devia;ons in brightness due to microlensing by intervening solar systems. This census, combined with that made by the Kepler mission, will determine how common Earth-­‐like planets are over a wide range of orbital parameters. ..” Benne| et al., 2009, MPF white paper L2: Bonus point! Stamp Collec;ng Microlensing Planets Planetary Caus-cs (Gould & Loeb) Resonant Caus-cs (Mao & Paczynski) Central Caus-cs (Griest & Safizadeh)
Beaulieu et al 2006 ~5.5 MEarth Bond et al 2004 Apeak ~ 12 ~1000 MEarth Apeak ~ 14 Gould et al 2006 ~13 MEarth Gaudi et al 2008 Apeak~ 8 ~86 MEarth Apeak ~ 290 Apeak ~ 40 ~1200 MEarth Ba;sta et al., 2011 Muraki et al., 2011 ~14 MEarth Apeak ~ 8 Apeak ~ 3 ~830 MEarth Sumi et al. 2010 ~22 MEarth Udalski et al 2005; Dong et al 2009 Apeak ~ 800 Dong et al in prep ~50 MEarth Apeak ~ 500 MOA-­‐2009-­‐BLG-­‐266, Survey “1.5” ~10 Earth mass at ~3.2 AU Muraki, Y., et al., 2011, ApJ, 741, 22 Credit: S. Gaudi MOA-­‐2009-­‐BLG-­‐266, Survey “1.5” ~10 Earth mass at ~3.2 AU Muraki, Y., et al., 2011, ApJ, 741, 22 Signal of an Earth from the ground! Next-­‐Gen Search in Ac;on Now! •  OGLE IV (Chile) A.  Udalski et al. 15-­‐45 min cadence 11 deg2 •  MOA-­‐II (New Zealand) I Bond et al. 15 min cadence 13 deg2 • 
WISE (Israel) D Maoz et al. 30 min cadence 8 deg2 Order of ~50 planets over 4 yr (Shvartzvald & Maoz, 2012, MNRAS.419.3631S) MOA-­‐2011-­‐BLG-­‐293Lb: A testbed for pure survey microlensing planet detec;ons OGLE
15
MOA
CTIO I
Wise
I (mag)
Weizmann 16
17
18
15.0
15.5
15.5
16.0
16.0
16.5
16.5
17.0
0.2 0.3 0.4 0.5 0.6
HJD’-5747.
17.0
0.2 0.3 0.4 0.5 0.6
HJD’-5747.
Point-Lens Fit
Survey-Only Data
15
I (mag)
16
17
18
15.0
Planet Fit
Survey-Only Data
15.0
15.0
15.5
15.5
16.0
16.0
16.5
16.5
17.0
0.2 0.3 0.4 0.5 0.6
HJD’-5747.
17.0
0.2 0.3 0.4 0.5 0.6
HJD’-5747.
Point-Lens Fit
All Data
5747.5
Planet Fit
All Data
5748.0
HJD’
5748.5
5747.5
5748.0
HJD’
5748.5
Yee et al., 2012, arXiv: 1201.1002 q=5.1 +/-­‐ 0.2x10-­‐3 s=0.545 +/-­‐ 0.005 M_L ~ 0.44 Msun m_p ~ 2.4 MJup In ~3-­‐5 years •  KMTNet –  Three 1.6m telescope with ~4 deg2 FoV –  Thousands of events per year with 10-­‐20 min cadence, expected to find ~ a few dozen ηEarth and 1-­‐2 orders of mag more Neptunes and Jupiters in 5-­‐
yr survey •  Antarc;ca? (Dome A) South Africa Chile Australia Microlensers Have a Tradi;on of Pessimism… A (Healthy?) Dose of Pessimism •  “Therefore, there is no great chance of observing this
phenomenon (microlensing)…”
-- A. Einstein, 1936, Science, 84, 506
•  “The principle was fine, but it was considered a science
fiction by me as well as all other astronomers ...”
-- B. Paczynski, 1994, recalling early days before
any microlensing experiments ever started …
•  “The number of people who deserve to be
acknowledged here is probably larger than the number
of planets that will ever be found by microlensing.”!
-- B. Scott Gaudi, PhD thesis, 2000 Thank you! 
Related documents