Download report - WordPress.com

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
DESIGN AND FABRICATION OF ROLLING MACHINE
WITH SPLINES
A dissertation submitted in partial fulfillment for the award of the degree of
BACHELOR OF ENGINEERING
in
MECHANICAL ENGINEERING
Submitted by
ABDUL SALAM.A
92509144001
KADER BATCHA.A
92509144021
Under the Guidance of
Asst. Prof. D. PALANISAMY M.E
DEPARTMENT OF MECHANICAL ENGINEERING
ANNA UNIVERSITY OF TECHNOLOGY TIRUCHIRAPPALLI
TIRUCHIRAPPALLI – 620 024
April-2012
1
M.A.R. COLLEGE OF ENGINEERING AND TECHNOLOGY
Viralimalai - 621316
BONAFIDE CERTIFICATE
This is to certify that this is the bonafide of DESIGN AND FABRICATION
PROJECT carried out by ABDUL SALAM.A and KADAR BATCHA .A Reg. No
92509144001 & 92509144021 in VI semester/ III year during 2011 – 2012.
HEAD OF THE DEPARTMENT
INTERNAL GUIDE
PROJECT CO – ORDINATOR
Submitted for the university practical examination held on
Internal Examiner
External Examiner
2
3
4
ACKNOWLEDGEMENT
First of all we thank our god for his Shower of blessings and his Divine
help which enables us to complete the project successfully.
We are extremely thankful to our parents for enlightening us by
providing professional education and for their prayerful support that makes us to
complete the project.
We extend our sincere thanks to Alhaj Er. A. Mohamed Yunus B.E.,
M.Sc., (Engg.) Founder & Chairman, M.A.R College of Engineering and
Technology, Viralimalai, for offering the means of attaining our most
cherished goal and Environment
We extend our deepest gratitude to Principal Dr A. Edgar Ruskin Frank
Ph.D, M.A.R College of Engineering & Technology, Viralimalai for giving us
permission to do the project work successfully,
We are grateful to express our profound thanks to
S.SOMASUNDARAM M.E, Head of Department, M.A.R College of
Engineering & Technology, Viralimalai, who has been a source of
encouragement and moral strength throughout our study period.
It gives immense pleasure to extend my sincere and heartfelt gratitude to
project guide Mr.D.PALANISAMY M.E, Assistant Professor for his untiring,
valuable and timely suggestion in dispensable situation during the period of
study.
Also heartfelt thanks to our friends, Teaching and Non Teaching Staff
members who helped us to finish the project work successfully.
5
TABLE OF CONTENTS
CHAPTER NO.
1.
TITLE
PAGE NO
ABSTRACT
6
LIST OF TABLE
7
LIST OF FIGURES
8
INTRODUCTION
1.1 . GENERAL
9
1.2 DEFINITIONS
10
1.3 TYPE OF ROLLING
12
1.3.1 Hot rolling
12
1.3.3 Cold rolling
13
1.4 TYPES OF ROLLING PROCESS
14
1.4.1 Roll bending
14
1.3.2 Roll forming
15
1.3.3 Flat rolling
15
1.3.4 Foil rolling
16
1.3.5 Ring rolling
17
1.3.6 Structural shape rolling
18
1.3.7 Controlled rolling
18
6
2.
LITERATURE REVIEW
19
2.1 Forces and geometrical relationships in rolling
19
2.2 Terminology
24
2.3 Products
27
2.4 Rolls
28
2.5 Rolling mills
30
2.5.1 Modern Rolling Mill
30
2.6 DESIGN CALCULATION
31
2.6.1 Dimension Of The Rolling Components
31
2.7 Fabrication Of Rolling Machine
33
2.7.1 Machining Operations
34
2.8 FURTHER OPERATION
35
2.9 BILL OF MATERIALS
36
2.10 COST ESTIMATION
37
2.10.1 Material cost
37
2.10.2. Machining cost
38
2.10.3 Over heads
2.10.4 Total cost
3.
CONCLUSION
4.
REFERENCES
7
38
ABSTRACT
Rolling is the process in which the metal and alloys are plastically deformed into
semi-finished or finished condition, by passing these between circular or contoured rotating
cylinder (rolls).the metals is drawn into the opening between the rolls by frictional force s
between the metal and the roll surface. In deforming metal between rolls, the workpiece is
subjected to high compressive force from the squeezing action of rolls.
In metalworking rolling is a metal forming process in which metal stock is passed
through a pair of rolls. Rolling is classified according to the temperature of the metal rolled.
If the temperature of the metal is above its recrystallization temperature, then the process is
termed as hot rolling. If the temperature of the metal is below its recrystallization
temperature, the process is termed as cold rolling. In terms of usage, hot rolling processes
more tonnage than any other manufacturing process and cold rolling processes the most
tonnage out of all cold working processes.
Project is based on the need for rolling the sheet metal with splines design This design
and fabrication purpose of rolling and designing the sheet metal.
OUR PROJECT HAVE THE FOLLOWING OBJECTIVES:
This rolling machine is used to roll the sheet metals with splines and to improve
the strength of the sheet metals. Rolling machine is device which used for rolling the
sheet metal. The sheet metals can be easily rolled. Even an unskilled technician can
use them,With these features, we sincerely hope that our project serve as a valuable
project. Welcome the correction, comments based on our project.
8
LIST OF TABLE
NO
DESCRIPTION
PAGE NO
Table 1
Bill of materials
36
Table 2
Material cost
37
Table 3
Machining cost
38
9
LIST OF FIGURES
N0
DESCRIPTION
PAGE NO
Fig 1
Rolling Machine
10
Fig 2
Process Of Rolling Machine
11
Fig 3
Rolled Strips.
11
Fig 4
A Coil Of Hot-Rolled Steel
12
Fig 5
Process Of Rolling
14
Fig 6
Roll Forming
15
Fig 7
A Schematic Of Ring Rolling
16
Fig 8
Cross-Sections Of Continuously Rolled Structural
Shapes Showing The Change Induced By Each
Rolling Mill.
18
10
1. INTRODUCTION
1.1. GENERAL
Steel is initially produced in 20 cm thick slabs. Steel in this form is usually processed
further before being sold to customers. This generally involves rolling it into thinner
sheets (and sometimes forming it into tubes). This steel is now conveniently shaped, but is
prone to rusting so for applications where it is exposed to the weather it is often galvanized
(and sometimes painted as well) to prevent corrosion.
Step 1 - Hot Rolling
In the hot rolling process, slabs are reheated and fed into the rough rolling mill where
it is reduced from 210mm to 25mm thickness. The thin sheets are then wound onto spools to
make 'coils' of rolled steel.
Step 2 - Cold Rolling
Hot rolled coils are welded into continuous sheets, and the iron oxides that have formed in
hot rolling removed with hydrochloric acid:
Fe2O3⋅xH2O + 6HCl → 2FeCl3 + (x+3)H2O
The sheets are then oiled to prevent further corrosion and rolled. This rolling further
reduces the thickness of the sheets and gives them a smoother surface.
Step 3 - Galvanising
Hot alkali solutions are used to remove the remaining grease, then the steel is treated with
acid to clean and etch the surface. The steel is repeatedly heated and cooled to strengthen
it and then galvanised by dipping it in zinc. The steel can then be used as is for roofing, or
further processed.
11
Step 4 - Paint Coating
The steel is again cleaned and then coated with primer.
Solvent in the primer
is evaporated by a hot air jet and the paint baked on. Finish coat is then applied, baked and
cured on top of the primer coating.
Different grades of finishing paint are used for
different applications.
1.2 DEFINITIONS
Definition of Rolling : The process of plastically deforming metal by passing it between rolls.
Rolling is the most widely used forming process, which provides high production and close
control of final product. The metal is subjected to high compressive stresses as a result of the
friction between the rolls and the Rolling process metal surface.
SHEET METAL ROLLING MACHINE:
fig 1 rolling MACHINE.
The rolling machine without splines in various industries.
12
fig.2 process of rolling machine
fig 3 rolled strips.
Finished rolled sheet metals
13
1.3 TYPE OF ROLLING
1.3.1 Hot rolling
Fig 4. A Coil of Hot-Rolled Steel
Hot rolling is a metalworking process that occurs above the recrystallization
temperature of the material. After the grains deform during processing, they recrystallize,
which maintains an equiaxed microstructure and prevents the metal from work hardening.
The starting material is usually large pieces of metal, like semi-finished casting products,
such as slabs, blooms, and billets. If these products came from a continuous casting operation
the products are usually fed directly into the rolling mills at the proper temperature. In
smaller operations the material starts at room temperature and must be heated. This is done in
a gas- or oil-fired soaking pit for larger work pieces and for smaller work pieces induction
heating is used. As the material is worked the temperature must be monitored to make sure it
remains above the recrystallization temperature. To maintain a safety factor a finishing
temperature is defined above the recrystallization temperature; this is usually 50 to 100 °C
(90 to 180 °F) above the recrystallization temperature. If the temperature does drop below
this temperature the material must be re-heated before more hot rolling.
Hot rolled metals generally have little directionality in their mechanical properties and
deformation induced residual stresses. However, in certain instances non-metallic inclusions
will impart some directionality and work pieces less than 20 mm (0.79 in) thick often have
some directional properties. Also, non-uniformed cooling will induce a lot of residual
stresses, which usually occurs in shapes that have a non-uniform cross-section, such as Ibeams and H-beams. While the finished product is of good quality, the surface is covered in
mill scale, which is an oxide that forms at high-temperatures. It is usually removed via
14
pickling or the smooth clean surface process, which reveals a smooth surface. Dimensional
tolerances are usually 2 to 5% of the overall dimension.
Hot rolled mild steel seems to have a wider tolerance for amount of included carbon than cold
rolled, making it a bit more problematic to use as a blacksmith. Also for similar metals, hot
rolled seems to typically be more costly.
Hot rolling is used mainly to produce sheet metal or simple cross sections, such as rail tracks.
1.3.2 Cold rolling
Cold rolling occurs with the metal below its recrystallization temperature
(usually at room temperature), which increases the strength via strain hardening up to 20%.
It also improves the surface finish and holds tighter tolerances. Commonly cold-rolled
products include sheets, strips, bars, and rods; these products are usually smaller than the
same products that are hot rolled. Because of the smaller size of the work pieces and their
greater strength, as compared to hot rolled stock, four-high or cluster mills are used. Cold
rolling cannot reduce the thickness of a work piece as much as hot rolling in a single pass.
Cold-rolled sheets and strips come in various conditions: full-hard, half-hard, quarter-hard,
and skin-rolled. Full-hard rolling reduces the thickness by 50%, while the others involve less
of a reduction. Skin-rolling, also known as a skin-pass, involves the least amount of
reduction: 0.5-1%. It is used to produce a smooth surface, a uniform thickness, and reduce the
yield point phenomenon (by preventing Lüders bands from forming in later processing). It
locks dislocations at the surface and thereby reduces the possibility of formation of Lüders
bands. To avoid the formation of Lüders bands it is necessary to create substantial density of
unpinned dislocations in ferrite matrix. It is also used to breakup the spangles in galvanized
steel. Skin-rolled stock is usually used in subsequent cold-working processes where good
ductility is required.
Other shapes can be cold-rolled if the cross-section is relatively uniform and the transverse
dimension is relatively small. Cold rolling shapes requires a series of shaping operations,
usually along the lines of sizing, breakdown, roughing, semi-roughing, semi-finishing, and
finishing.
15
If processed by a blacksmith, the smoother, more consistent, and lower levels of carbon
encapsulated in the steel makes it easier to process, but at the cost of being more expensive
1.3 TYPES OF ROLLING PROCESS :
1.3.1Roll bending
fig 5. Roll bending
Roll bending produces a cylindrical shaped product from plate or steel metal.
16
1.3.2 Roll forming
fig 6. Roll forming
Roll forming is a continuous bending operation in which a long strip of metal
(typically coiled steel) is passed through consecutive sets of rolls, or stands, each performing
only an incremental part of the bend, until the desired cross-section profile is obtained. Roll
forming is ideal for producing parts with long lengths or in large quantities. There are mainly
3 main processes, 4 rollers, 3 rollers and 2 rollers, and have different advantages according to
the specifications of the plate (thickness length and diameter) and the shapes.
Also call roll bending or plate rolling process this is used in many fields, Exhaust
pipes, Trucks brakes, Pressure Vessel Tanks Gaz tanks, Components for airbags, Fire
extinguishers, Hot water boilers, Drawer rails, Filter housings, Fittings, Fuel filters, Gear
components, Gear selector forks, Multi diameter Shells, Pressurized containers, Pumps'
shells, Rear axles, Sink mountings, Spinning compatible tubes, Washing drumbs.
17
1.3.3 Flat rolling
Flat rolling is the most basic form of rolling with the starting and ending material having a
rectangular cross-section. The material is fed in between two rollers, called working rolls,
that rotate in opposite directions. The gap between the two rolls is less than the thickness of
the starting material, which causes it to deform. The decrease in material thickness causes the
material to elongate. The friction at the interface between the material and the rolls causes the
material to be pushed through. The amount of deformation possible in a single pass is limited
by the friction between the rolls; if the change in thickness is too great the rolls just slip over
the material and do not draw it in. The final product is either sheet or plate, with the former
being less than 6 mm (0.24 in) thick and the latter greater than; however, heavy plates tend to
be formed using a press, which is termed forming, rather than rolling.[
Oftentimes the rolls are heated to assist in the workability of the metal. Lubrication is
often used to keep the workpiece from sticking to the rolls. To fine tune the process the speed
of the rolls and the temperature of the rollers are adjusted.
1.3.4 Foil rolling
Foil rolling is a specialized type of flat rolling, specifically used to produce foil, which is
sheet metal with a thickness less than 200 µm (0.0079 in). The rolling is done in a cluster
mill because the small thickness requires a small diameter rolls. To reduce the need for small
rolls pack rolling is used, which rolls multiple sheets together to increase the effective
starting thickness. As the foil sheets come through the rollers, they are trimmed and slitted
with circular or razor-like knives. Trimming refers to the edges of the foil, while slitting
involves cutting it into several sheets. Aluminum foil is the most commonly produced
product via pack rolling. This is evident from the two different surface finishes; the shiny side
is on the roll side and the dull side is against the other sheet of foil.
18
1.3.5 Ring rolling
fig 7. A schematic of ring rolling
Ring rolling is a specialized type of hot rolling that increases the diameter of a ring.
The starting material is a thick-walled ring. This workpiece is placed between two rolls an
idler roll, while another roll, called the driven roll, presses the ring from the outside. As the
rolling occurs the wall thickness decreases as the diameter increases. The rolls may be shaped
to form various cross-sectional shapes. The resulting grain structure is circumferential, which
gives better mechanical properties. Diameters can be as large as 8 m (26 ft) and face heights
as tall as 2 m (79 in). Common applications include rockets, turbines, airplanes, pipes, and
pressure vessels.
19
1.3.6 Structural shape rolling
fig 8. Cross-sections of continuously rolled structural shapes, showing the change
induced by each rolling mill.
1.3.7 Controlled rolling
Controlled rolling is a type of thermomechanical processing which integrates controlled
deformation and heat treating. The heat which brings the workpiece above the
recrystallization temperature is also used to perform the heat treatments so that any
subsequent heat treating is unnecessary. Types of heat treatments include the production of a
fine grain structure; controlling the nature, size, and distribution of various transformation
products (such as ferrite, austenite, pearlite, bainite, and martensite in steel) inducing
precipitation hardening and, controlling the toughness. In order to achieve the entire process
must be closely monitored and controlled. Common variables in controlled rolling include the
starting material composition and structure, deformation levels, temperatures at various
stages, and cool-down conditions. The benefits of controlled rolling include better
mechanical properties and energy savings.
20
2. LITERATURE REVIEW
2.1 Forces and geometrical relationships
in rolling :
• A metal sheet with a thickness ho enters
the rolls at the entrance plane xx with a
velocity vo.
• It passes through the roll gap and leaves
the exit plane yy with a reduced thickness
hf and at a velocity vf.
• Given that there is no increase in
width, the vertical compression of the
metal is translated into an elongation in
the rolling direction.
• Since there is no change in metal
volume at a given point per unit time
throughout the process, therefore
bhovo = bhv = bhf vf
…Eq.1
Where b is the width of the sheet
v is the velocity at any thickness h intermediate between ho and hf.
From Eq.1
Bhovo = bhf vf
Given that bo = bf
Ho
𝑳𝒐
𝒕
= hf
𝑳𝒇
𝒕
Then we have
voho = vf hf
𝐯𝐨
𝐯𝐟
𝐡𝐟
= 𝐡𝐨…Eq.2
21
When ho > hf , we then have vo < vf
The velocity of the sheet must steadily increase
from entrance to exit such that a vertical elementin the sheet remain undistorted.
• At only one point along the surface of contact between the roll and the
sheet, two forces act on the metal: 1) a radial force Pr and 2) a tangential frictional force F.
• If the surface velocity of the roll vr equal to the velocity of the sheet, this
point is called neutral point or no-slip point. For example, point N.
• Between the entrance plane (xx) and the neutral point the sheet is moving slower than the
roll surface, and the tangential frictional force, F, act in the direction (see Fig) to draw the
metal into the roll.
• On the exit side (yy) of the neutral point, the sheet moves faster than the roll surface. The
direction of the frictional fore is then reversed and
22
oppose the delivery of the sheet from the rolls. Pr is the radial force, with a vertical
component P (rolling load - the load with which the rolls press against the metal).
The specific roll pressure, p, is the rolling load divided by the contact area.
𝑃
P= 𝑏𝐿𝑝 …Eq.3
Where, b is the width of the sheet.
Lp is the projected length of the arc of contact.
𝐿𝑝 = [𝑅(ho-hf)−(ho-hf) / 4]^1/2 = [R(ho-hf)]^2 …Eq.4
• The distribution of roll pressure along the arc of contact shows that the pressure rises to a
maximum at the neutral point and then falls off.
• The pressure distribution does not come to a sharp peak at the neutral
point, which indicates that the neutral point is not really a line on the roll
surface but an area.
• The area under the curve is proportional to the rolling load.
• The area in shade represents the force required to overcome frictional forces between the
roll and the sheet.
• The area under the dashed line AB represents the force required to deform the metal in
plane homogeneous compression.
23
Simplified analysis of rolling load
The main variables in rolling are:
• The roll diameter.
• The deformation resistance of the metal as influenced by metallurgy,
temperature and strain rate.
• The friction between the rolls and the workpiece.
• The presence of the front tension and/or back tension in the plane of the
sheet.
We consider in three conditions:
1) No friction condition
2) Normal friction condition
3) Sticky friction condition.
• Frictional force is needed to pull the metal into the rolls and responsible for a large portion
of the rolling load.
• High friction results in high rolling load, a steep friction hill and great tendency for edge
cracking.
24
• The friction varies from point to point along the contact arc of the roll. However it is very
difficult to measure this variation in μ, all theory of rolling are forced to assume a constant
coefficient of friction.
• For cold-rolling with lubricants, μ ~ 0.05 – 0.10.
• For hot-rolling , μ ~ 0.2 up to sticky condition.
Problems and defects in rolled products
Defects from cast ingot before rolling
• Porosity, cavity, blow hole occurred in the cast ingot will be closed up
during the rolling process.
• Longitudinal stringers of non-metallic inclusions or pearlite banding are related to melting
and solidification practices. In severe cases, these defects can lead to laminations which
drastically reduce the strength in the thickness direction. Defects other than cracks can result
from defects introduced during the ingot stage of production.
25
under high rolling forces, the rolls flatten and bend, and the entire mill is elastically
distorted.
• Mill spring causes the thickness of the sheet exiting from the rolling mill to be
greater than the roll gap set under no-load conditions.
• Precise thickness rolling requires the elastic constant of the mill. Calibration
curves are needed, see Fig. (1–3 GNm-1 for screw-loaded rolling mills, 4
GNm-1 for hydraulically loaded mills).
2.2 Terminology
• Bloom is the product of first breakdown of ingot
(cross sectional area > 230 cm2).
• Billet is the product obtained from a further reduction by hot rolling
(cross sectional area > 40x40 mm2).
• Slab is the hot rolled ingot
(cross sectional area > 100 cm2 and with a width ≥ 2 x thickness).
Solutions to flatness problems
• Camber and crown can be used to correct the roll deflection (at only one
value of the roll force). Or use rolling mill equipped with hydraulic jacks to
permit the elastic distortion of the rolls to correct deflection.
26
fig 8 process of rolling
• Hot mill can be provided with facilities for crown control to improve the control of the
profile of hot strip mill.
• For example work roll bending with continuous variable crown and pair cross
mills.
•The roll cross angle of rolls incorporated in a stand of each rolling mill is set at a
predetermined value beforehand.
• If there is a roll cross angle that will enable a target sheet crown to be applied
to each sheet and the roll bender load of each stand is adjusted on-line, thereby
effecting sheet crown control.
27
Thickness measurement in continuous
COLD STRIP MILLS
fig. sensor rolling
• Thickness is measured by x-ray gauges while the error in the thickness following the first
tand is usually fedback to adjust the gap sitting on the first stand.
• Gauge control in subsequent stands usually is achieved by controlling the
strip tension through controlling the relative roll speed in successive stands
or the coiler speed.
• Gauge control through control of strip tension has faster response
time than control through change in roll setting.
28
2.3 Products:
• Plate is the product with a thickness > 6 mm.
• Sheet is the product with a thickness < 6 mm and width > 600 mm.
• Strip is the product with a thickness < 6 mm and width < 600 mm.
Mill products Further rolling steps
 Bloom Billet Slap
 Plate Sheet Strip
29
2.4 ROLLS :
30
ROLLING WITH SPLINES
31
2.5 ROLLING MILLS
2.6.2 DESIGN PROCEDURE
A rolling mill basically consists of
1. Rolls
2. Bearings
3. a housing for containing these parts
4. a drive (motor) for applying power to the rolls and controlling the speed.
32
2.5.1 MODERN ROLLING MILL :
1. Requires very rigid
2. Construction , large motors to supply enough power (MN). Successive stands of a
large continuous mill
2.6 DESIGN CALCULATION
2.6.1 DIMENSION OF THE ROLLING COMPONENTS:
1. Length of hollow pipe
= 300 mm
2. diameter of hollow pipe
= 40 mm
3 MS – rod length
= 300 mm
4. MS –rod diameter
= 40 mm
6. Pipe rings thickness
= 5 mm
33
2.6.2.1 SELECTION OF ROLLER
A roller is to be selected for making a rolls the sheet metal
is required diameter = 40 mm and length =300mm
2.6.2.2 SELECTION OF GEARS
We can go for the spur gears for the three rollers to transmit
the power to the rollers from the rotating handle.
34
FINISHED JOB
Fig. FINISHED JOB
2.7 FABRICATION OF ROLLING MACHINE
There are few types of fabrication methods are done on this rolling
machine.
They are,
1. Drilling
2. Turning
3. Grinding
4. Chamfering
5. Milling
6. Boring
7. Grooving
8. Welding
35
2.7.1 MACHINING OPERATIONS:
Drilling
Drilling is used to produce holes in objects. In this project the jig
plates requires the holes for making bolted assembly. Also to fitting
the bushes holes are required. These holes are done by conventional
vertical type drilling machine.
Fine grinding
It is nothing but the grinding process, which is done as smooth
with fine grains. This is done as the each plate and flanges for good
surface finish. It is done by conventional grinding machine.
Chamfering
It is the process used to smooth the sharp edges. It is required in
the fabrication processes in order to avoid scratches made by the parts.
In this project it is used to smooth the sharp edges of the gas cutted
plates.
Welding
It is the process, which is used to join two, is more similar
materials as well as dissimilar materials. In this project it is used to
join the round flanges with the l-bow pipe to make the work piece.
This is done by arc welding machine.
Boring
Boring is the process which is used to make material removal
internally. In this project it is used to boring on the two cover plates to
hold the l-bow with flange. Through bores are also produced on the two
cover plates. This is done by using lathe.
36
Milling
Milling is used to machine curved surfaces. In this project the
flanges for elbow pipe and supporting blocks need curved surfaces.
This is done by using conventional milling machine.
Grooving
It is used in this project to make the groove on the both sides of
top cover plate. This is done by conventional lathe.
2.8 FURTHER OPERATIONS
 Cleaning
It is the operation to clean the all machined parts without burrs, dust
and chip formals. By meaning the parts they are brightened and goodlooking.
 Assembling
It is the operation, which deals with the assembling of various parts
produced by above operations.
37
2.9 BILL OF MATERIALS
Table 1
SNO
PART NAME
MATERIAL
NO.OFF
1
Hollow pipe
G.I
2
2
Rod
Mild steel
1
3
Plate
Mild steel
2
4
Spur gear
Mild steel
3
5
shaft
Mild steel
3
6
Sheet (raw material)
Galvanized iron
1
2.10 COST ESTIMATION
2.10.1 MATERIAL COST:
Table 2
S.NO COMPONENTS QUANTITY
COST
1
Hollow pipe
2
RS.120
2
Rod
1
RS.150
3
Plate
2
RS.50
4
Spur gear
3
RS.350
5
Job
1
Rs.75
Rs. 745
Total
38
2.10.2 MACHINING COST:
Table 3
S.NO
MACHINING OPERATION
COST
1
LATHE WORK
Rs. 300
2
DRILL WORK
Rs.125
3
MILLING WORK
Rs.175
4
WELDING WORK
Rs.150
5
GRINDING WORK
Rs.125
TOTAL
Rs.875
2.10.3 OVER HEADS:
MACHINING COST
= Rs.875
TRANSPORTATION COST
= Rs. 200
____________
TOTAL
= Rs.1075
____________
39
2.10.4 TOTAL COST:
Material cost
=
Rs.745
Overheads
=
Rs.1075
=
Rs.1820
Total
2.11 Problems and defects in rolled products
Defects from cast ingot before rolling
• Porosity, cavity, blow hole occurred in the cast ingot will be closed up
during the rolling process.
• Longitudinal stringers of non-metallic inclusions or pearlite banding
are related to melting and solidification practices. In severe cases, these
defects can lead to laminations which drastically reduce the strength in the
thickness direction.
40
3. CONCLUSION
This report deals with the design and fabrication of Rolling machine and the
detailed drawing of the component and assembles. The project carried out by us
made an impressing task in forming process. It is very useful in sheet metal
industries for mass production.
4. References:
• Dieter, G.E., Mechanical metallurgy, 1988, SI metric edition,
McGraw-Hill, ISBN 0-07-100406-8.
• Edwards, L. and Endean, M., Manufacturing with materials, 1990,
Butterworth Heinemann, ISBN 0-7506-2754-9.
• Beddoes, J. and Bibbly M.J., Principles of metal manufacturing
process, 1999, Arnold, ISBN 0-470-35241-8.
• Lecture note, 2003.
• Firth Rixson leavelets.
• Metal forming processes, Prof Manas.
• Metal forming lecture, Ass Prof. P. Srichareonchai.
41