Download big metals, small ligands - American Crystallographic Association

yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

influence on the metal-ligand bonding mode, resulting in complexes having a diverse array of
both coordination number and number of chelating or bridging ligands. The thermal reactivity of
1, i.e., the loss of (NMe2BH2)2 to yield the 14- coordinate [Th(H3BNMe2BH3)2(BH4)2] (2),
suggests that even the 15 coordinate structure of 1 seen in the solid state is still sufficiently
crowded to promote conversion to a geometry with a lower coordination geometry. However,
with a judicious choice of large metal and small ligands, complexes with stable 16-coordinate
geometries do not seem implausible.
Work at Argonne National Laboratory was supported by the US Department of Energy, BESMaterials Science, under contract DEAC02-06CH11357. Work at the University of Illinois was
supported by the U.S. National Science Foundation (CHE 07-50422) and the PG Research
Foundation. We thank Scott R. Wilson and Teresa Prussak-Wieckowska for collecting the XRD
A. Werner, Z. Anorg. Chem. 3, 267-330 (1893).
P. Pfeiffer, in: Organische Molekulverbindungen, 2nd ed. (Stuttgart, 1927), p. 18.
M. Drew, Coord. Chem. Rev. 24, 179-275 (1977).
R. D. Shannon, Acta Crystallogr. A 32, 751-767 (1976).
B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F.
Barragán, and S. Alvarez, Dalton Trans. 2832 (2008).
A. Hermann, M. Lein, and P. Schwerdtfeger, Angew. Chem. Int. Ed. 46, 2444-2447 (2007).
M. Brookhart, J. Organomet. Chem. 250, 395-408 (1983).
R. H. Crabtree, Angew. Chem. Int. Ed. Engl. 32, 789-805 (1993).
M. Green, J. Organomet. Chem. 500, 127-148 (1995).
Z. Xu, Coord. Chem. Rev. 156, 139-162 (1996).
H. R. Hoekstra and J. J. Katz, J. Am. Chem. Soc. 71, 2488-2492 (1949).
M. Ehemann and H. Nöth, Z. Anorg. Allg. Chem. 386, 87-101 (1971).
K. Hedberg and V. Plato, Inorg. Chem. 10, 590-594 (1971).
R. W. Broach, I. S. Chuang, T. J. Marks, and J. M. Williams, Inorg. Chem. 22, 1081-1084
R. H. Banks, N. M. Edelstein, R. R. Rietz, D. H. Templeton, and A. Zalkin, J. Am. Chem.
Soc. 100, 1957-1958 (1978).
H. I. Schlesinger and H. C. Brown, J. Am. Chem. Soc. 75, 219-221 (1953).
E. R. Bernstein, W. C. Hamilton, T. A. Keiderling, S. J. La Placa, S. J. Lippard, and J. J.
Mayerle, Inorg. Chem. 11, 3009-3016 (1972).
R. R. Rietz, A. Zalkin, D. H. Templeton, N. M. Edelstein, and L. K. Templeton, Inorg.
Chem. 17, 653-658 (1978).
R. R. Rietz, N. M. Edelstein, H. W. Ruben, D. H. Templeton, and A. Zalkin, Inorg. Chem.
17, 658-660 (1978).
A. Zalkin, R. R. Rietz, D. H. Templeton, and N. M. Edelstein, Inorg. Chem. 17, 661-663