Download Overview of the Geochemistry of Archean and Proterozoic Rocks of

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Transcript
Overview of the Geochemistry of Archean and Proterozoic Rocks of
the Phelps Lake Region, Mudjatik Domain, Hearne Province
C.T. Harper
Harper, C.T. (2004): Overview of the geochemistry of Archean and Proterozoic rocks of the Phelps Lake region, Mudjatik
Domain, Hearne Province; in Summary of Investigations 2004, Volume 2, Saskatchewan Geological Survey, Sask. Industry
Resources, Misc. Rep. 2004-4.2, CD-ROM, Paper A-7, 24p.
Abstract
Geochemical analyses of the major rock units from the Phelps Lake Project are reported and preliminary
interpretations of the data presented. Archean tonalitic orthogneiss components of migmatites and gneissic tonalite
intrusions are calcic, peraluminous rocks, with volcanic arc granite (VAG) affinity, high Sr/Y and La/Yb ratios, and
a neutral to positive Eu anomaly. These are similar to the characteristics of Archean tonalite-trondhjemitegranodiorite suites that are thought to have formed through partial melting of a shallow subducting, garnet-bearing
eclogitic, or basaltic crust. Archean granitic intrusions are calc-alkalic, peraluminous rocks with transitional VAG
to syn-collisional granite (syn-COLG) affinities. The Archean Ennadai Group comprises mainly mafic with minor
intermediate to felsic metavolcanic rocks and minor interlayered psammopelitic to pelitic schist and various iron
formation facies. The mafic metavolcanic rocks are subalkaline, high-Fe to high-Mg tholeiites with transitional
MORB to VAB character, which is typical of volcanic arc–back arc basin settings. The felsic metavolcanic rocks
are calc-alkaline and typical of a volcanic arc setting. The chemical signature of 10 samples of various iron
formation facies, particularly with a strong positive Eu anomaly, are similar to iron formations associated with
volcanic-hosted massive sulphide deposits and suggests there may be potential for the Ennadai Group to host such
deposits. Weakly to strongly iron sulphide-bearing (± chalcopyrite) metavolcanic rocks and mafic metavolcanichosted pyritic quartz veins, contain background to anomalous concentrations of base and precious metals.
Proterozoic-aged rocks include the Hurwitz Group metasedimentary rocks and various syn- to post–Trans-Hudson
intrusions. Pelitic and ferruginous pelitic schists and associated iron formations of the Hurwitz Group have similar
rare earth element profiles as the North American Shale Composite. The general negative Eu anomaly of the
ferruginous pelites and iron formations is characteristic of shale/mudstone-hosted iron formations. Proterozoic
intrusions are subdivided into two age groups: the 1.85 to 1.8 Ga Hudson and the 1.76 to 1.75 Ga Nueltin granite
suites. Chemically, both suites are silicic, potassic, calc-alkaline, and peraluminous granites. They mostly have synCOLG affinity. The Nueltin granites have a tendency to be porphyritic, fluorite-bearing, and possibly REEenriched. Perhaps the most interesting sample collected is a massive, lepidolite pegmatite boulder that has very
high concentrations of Li, Rb, Cs, Nb, Ta, Sn, Be, Tl, Ga, and Ge, which is characteristic of complex, rare element
pegmatites of the Bernic Lake type. Such pegmatites form from volatile-rich magmas commonly associated with
post-tectonic granitic intrusions. The fluoritic Nueltin granite suite is a likely candidate from which the rare element
pegmatite could have originated, and thus the boulder’s source may lie nearby to the north or northeast.
Keywords: Phelps Lake, Archean, Proterozoic, geochemistry, intrusive rocks, Ennadai Group metavolcanics, iron
formations, Hurwitz Group metasediments, mineral occurrences.
1. Introduction
As part of the 1:100 000 scale geological mapping component of the Phelps Lake Project (Figure 1) completed from
2001 to 2003 (Harper et al., 2001, 2002a, 2003; Coulson et al., 2001), 112 rock samples were collected for
geochemical analyses. Samples of Archean rocks include: tonalitic orthogneiss from migmatites, foliated to gneissic
tonalitic and granitic intrusions, and mafic and felsic metavolcanic rocks and iron formations of the Ennadai Group.
Proterozoic rocks sampled include: Hurwitz Group metasediments and rare metavolcanic rocks, Wollaston
Supergroup pelitic gneiss, and the Hudson and Nueltin granite suites. Thirty-five samples representing a variety of
metavolcanic-, metasediment-, and granitoid-hosted mineral occurrence types were collected from outcrop,
felsenmeer, and transported boulders to test their metal endowment. All samples were analysed at Activation
Laboratories Ltd., Ancaster, Ontario for major oxides and a group of trace and rare earth elements (see Appendix 1
for analytical details). The geochemical data for samples collected during the 2001 field season, along with the till
geochemistry (Campbell, 2001) and mineral deposit studies geochemistry (MacDougall, 2001), was previously
released without interpretation, as Saskatchewan Industry and Resources Data File 21 (Harper et al., 2002b). Other
geochemical studies related to the project include those of: Coulson (2002) for Ennadai Group metavolcanic rocks
Saskatchewan Geological Survey
1
Summary of Investigations 2004, Volume 2
106°
102°
60°
103°
104°
105°
2003
Zo
n
e
Ennadai Gp
Bonokoski
Lake
ar
Zon
e
She
r
Rive
se
2002
2001
La
ke
She
a
r
Grea
Misaw
Lake
Many
Islands
Lake
Hurwitz
Group
Bl
ac
Phelps
Lake
k
Black
Lake
NTS 64M
110°
60°
108°
Nolan Ena
Train
Zemlack
B'lodge
Taltson
102°
60°
104°
106°
Dodge
Wollaston
Group
Mudjatik
Tantato
SR
59°
59°
59°
E
RADodge
ST
Z
58°
HE
AR
NE
Athabasca Basin
PN
Mu
dja
tik
e
rL
ak
Pe
te
Wollaston
Mudjatik Domain
W
oll
as
ton
Llo
y
d
Tantato
Domain
r
ve
Ri
in
rg
Vi
57°
Athabasca
Group
58°
Domain
Athabasca Basin
ol
W
A
54°
Lake
Re
ind
n
ee mai
r
DoZo
n
n
o
e
st
56°
55°
57°
r
te
Pe
L
56°
58°
la
e
ak
a in
m
an
m
ha th
at l i
W atho
B
Do
Rottenstone D.
55°
Reindeer
54°
e
Fa
l
ls
Sh
e
ar
Zo
n
e
Lake
N
ee
dl
a
he
B
Parker Lake
on
rZ
e
S
57°
LEGEND
Diabase dikes
and sills (1.28 to 1.10 Ga)
Mafic to ultramafic gneisses and intrusions
(2.6 Ga)
Athabasca Group: sandstones
(1.75 to 1.60 Ga)
Felsic granitoids (3.2 to 2.5 Ga)
Felsic granitoids and
migmatites (1.92 to 1.77 Ga)
Metasedimentary rocks (largely >2.5 Ga)
Wathaman Batholith: granitic rocks
(1.86 Ga)
Metavolcanic rocks (largely >2.5 Ga)
Metasedimentary rocks
(2.45 to 1.83 Ga)
Mylonite
Metavolcanic rocks (1.92 to 1.87 Ga)
Scale
25
0
25
50
75
100
km
Figure 1 - Location of the Phelps Lake Project area with respect to A) major lithostructural domains, and B) the regional
geological setting.
Saskatchewan Geological Survey
2
Summary of Investigations 2004, Volume 2
from part of the main Ennadai Greenstone Belt; Rainville (2002) and Rainville et al. (2002) for amphibolite rocks
equated with mafic metavolcanic rocks of the Ennadai Group from an outlying belt at Bonokoski Lake; MacDougall
(2002) who summarized the geochemical results from his two field seasons of sampling various mineral occurrences
throughout the Phelps Lake region; and Senkow (2003) for some unusual Hurwitz Group dolomitic marbles at
Many Islands Lake.
The main purpose of this paper is to present the geochemical data and provide a brief overview of some of the
important interpretations that have been derived from the data. For the major rock types, samples were collected
which showed the least potential for alteration and thus reduce the affects of element mobility. Harker-type plots
were used to determine element mobility in the different suites of rocks, but will not be discussed further.
2. General Geology
The Phelps Lake map area (NTS 64M) lies in the western part of the Hearne province, mainly in the northern
Mudjatik Domain, but also includes part of the Wollaston Domain in the southeast corner. In the extreme northwest
corner, mylonitic granites and amphibolites probably mark the southeast limit of the Striding-Athabasca mylonite
zone (Hanmer and Kopf, 1993; Hanmer, 1997), which occurs on the Hearne side of the Snowbird Tectonic Zone
(STZ). The STZ marks the boundary between the Rae and Hearne cratons.
The Phelps Lake area is largely underlain by Archean granitoid rocks which locally form an older basement
migmatite complex (ca. 3.3 to 2.82 Ga; e.g., Aspler and Chiarenzelli, 1996; Orrell et al., 1999; Harper et al., 2004)
to younger Archean supracrustal rocks, generally referred to as the Ennadai Greenstone Belt. This belt is part of a
regionally discontinuous supracrustal belt that extends over 700 km from northeast Saskatchewan to Rankin Inlet on
Hudson Bay. The metavolcanic and metasedimentary rocks (ca. 2.73 to 2.68 Ga) of the Saskatchewan portion of the
Ennadai Greenstone Belt (Figure 1) were informally referred to as the Ennadai Group by Macdonald (1984) and
that term was adopted by Reilly (1989, 1993) and by Harper et al. (2001, 2002a, 2003). These rocks were intruded
by ca. 2.72 to 2.6 Ga mafic to felsic plutons (Peterson and Lee, 1995; Peterson et al., 2000; Harper et al., 2004),
that were contemporaneous with volcanic activity and predated late Archean deformation and metamorphism at ca.
2.55 to 2.5 Ga (Davis et al., 2000). These plutons are dominantly well-foliated to gneissic tonalite and graniteleucogranite.
Paleoproterozoic Hurwitz Group metasedimentary rocks (ca. 2.4 to 1.9 Ga) are more widely distributed than
previously indicated, whereas the partially time-equivalent Wollaston Supergroup metasedimentary rocks (ca. 2.1 to
1.9 Ga) are only in the southeast. Paleoproterozoic gabbros, leucogranites, granites, and leucotonalites (ca. 1.85 to
1.75 Ga) intruded these rocks. The youngest rocks are west- and northwest-trending diabase dykes; the former
possibly belonging to the ca. 2.19 Ga Tulemalu or 1.9 Ga Chipman dyke swarms (Tella et al., 1997; Williams et al.,
1999), and the latter, mainly defined by aeromagnetic trends, are probably related to the ca. 1.27 Ga McKenzie
swarm (LeCheminant and Heaman, 1989).
The area has been affected by multiple thermotectonic events, during the Archean and subsequently the
Paleoproterozoic Trans-Hudson orogeny. The rocks generally exhibit amphibolite facies mineral assemblages, with
a gradual increase from lower amphibolite grade in Ennadai Group and Hurwitz Group rocks near the Northwest
Territories border, to upper amphibolite grade southwestwards; locally some rocks attained granulite facies
conditions. As all rocks, except the youngest intrusive rocks, have undergone some metamorphism, the prefix
‘meta’ will be dropped, for simplicity, in the remainder of the paper.
3. Geochemistry of the Archean Migmatites and Intrusive Rocks
The migmatite complex comprises multiple, predominantly tonalitic intrusive (orthogneiss) components, which are
geochemically similar to the younger tonalite gneisses (Appendix 2). Although the alkali elements are generally the
most mobile elements, their relatively tight clustering on bivariant plots (not shown) and on Figure 2 suggests that
their mobility was minimal, and as such they can provide appropriate chemical characterization. On an alkalis
versus silica plot (Frost et al., 2001) analyses of the migmatite and tonalite samples are characterized as calcic
intrusions, those of granitic intrusions are transitional from alkali-calcic to calc-alkalic (Figure 2A). On the ASI
(alumina saturation index) versus Na+K/Al plot (ibid), all analyses, with the exception of one gabbro, have
peraluminous characteristics, with a clear distinction between tonalitic and granitic rocks (Figure 2B). On a tectonic
discrimination diagram (Pearce et al., 1984) migmatitic and gneissic tonalites have relatively low Y + Nb over Rb
ratios (Figure 2C), similar to modern volcanic arc granites (VAG); granitic rocks show a transitional character
between the VAG and syn-collision granites (syn-COLG). This distinction in tectonic environments is also
suggested in the εNd values (see Harper and van Breemen, this volume) with tonalitic rocks having positive εNd
values (i.e., juvenile mantle derivation), and granitic rocks having slightly negative εNd (i.e., older crustal
Saskatchewan Geological Survey
3
Summary of Investigations 2004, Volume 2
involvement, substantiated by presence of inherited Mesoarchean zircon cores). Thus a collisional setting may have
developed between emplacement of the ca. 2.7 Ga tonalites and formation of the ca. 2.68 Ga granites.
On extended chondrite-normalized trace element plots (after Taylor and McLennan, 1985), with the exception of
migmatite sample 0111-128, the migmatites and tonalite gneisses have similar profiles (Figure 3A), and share strong
negative Nb and moderate negative Ti anomalies. Both rock types have elevated light rare earth element (LREE)
contents relative to their heavy rare earth element
(HREE) contents and their analyses also show both
negative and positive Zr anomalies. In addition, the
tonalitic migmatites and tonalite gneisses have low Y
(average ~5 ppm), high Sr/Y (~38 to 230) and La/Yb
(~10 to 80) ratios, and have neutral to slightly positive
Eu ratios. Such geochemical features are typical of
Archean tonalites (Sandeman et al., 2000; Selbekk and
Skjerlie, 2000) that are thought to have formed through
partial melting of a shallow subducting, garnet-bearing
basaltic crust (Drummond et al., 1996; Smithies and
Champion, 2000; Martin and Moyen, 2002; Smithies et
al., 2003).
Extended chondrite-normalized trace element
signatures (after Taylor and McLennan, 1985) of the
Archean granites (Figure 3B) are somewhat similar to
those of the tonalitic rocks, but generally have slightly
higher normalized concentrations. Small positive and
negative anomalies are indicated for Zr, Sm, and Eu;
negative Ti anomalies are more pronounced; and the
HREE profile is flat. The similarity to VAG setting is
shown in the REE normalized profiles for the
migmatites and tonalites (Figure 4A) and granites
(Figure 4B). Both groups straddle the VAG=1 profile,
with the migmatites and tonalites having a negative
slope for the HREE and the granites displaying both
positive and negative Eu anomalies. The strong
association of the granites to VAG is perhaps
contradictory to the notion of crustal contamination in
the formation of the granites, but it may also indicate
the relative importance of subduction-related processes
in their formation. Lending support to the subduction
process is the U-Pb SHRIMP age of 2681 Ma (Harper
and van Breemen, this volume) obtained on one such
granite that is identical to the 2681 to 2682 Ma ages of
Ennadai Group felsic volcanic rocks (Chiarenzelli and
Macdonald, 1986; Harper et al., 2004).
4. Ennadai Group Volcanic and Sedimentary
Rocks
Volcanic rocks of the Ennadai Group are dominated by
massive and pillowed mafic (basaltic) flows, lesser
mafic tuffaceous rocks, and minor intermediate to felsic
volcanic rocks (Appendix 3). Interlayered sedimentary
rocks include psammopelitic-pelitic schist and gneiss,
and various facies of iron formation. The geochemical
character of Ennadai Group mafic volcanic rocks from
Bonokoski Lake (Rainville, 2002) and from the main
Ennadai Greenstone Belt (Coulson, 2002) was
described as predominantly subalkaline, and both highFe and high-Mg tholeiitic in character. The few
intermediate to felsic volcanic rocks analysed showed
calc-alkaline character.
Figure 2 - Geochemical diagrams for the Archean
migmatites and intrusive rocks. A) Alkalis vs. SiO2 diagram
(Frost et al., 2001) to show alkalic to calcic character;
B) ASI (Al/(Ca-1.67P+Na+K)) versus Na+K/Al diagram
(Frost et al., 2001); and C) Rb versus Y+Nb (Pearce et al.,
1984) granitic tectonic discrimination diagram; ORG, ocean
ridge granite; syn-COLG, syn-collision granite; VAG,
volcanic arc granite; and WPG, within-plate granite.
Saskatchewan Geological Survey
4
Summary of Investigations 2004, Volume 2
Figure 3 - Extended chondrite-normalized trace element plots for: A) the Archean migmatites and tonalite gneisses and
B) the Archean granitic intrusive rocks. Chondritic normalizing values after Taylor and McLennan (1985).
Analytical results from additional samples collected across the Phelps Lake region (this study) confirm the
subalkaline tholeiitic nature, although one sample (0411-0003) from the western edge of the EGB shows komatiitic
basalt affinity (Figure 5A). Rainville (2002) noted the transitional nature of the volcanic rocks from MORB to
VAB, typical of volcanic arc–back arc basin settings. The additional data presented here, supports the transitional
MORB–VAB chemical character of the volcanic rocks. This is illustrated in Meschede’s (1986) Nb-Zr-Y ternary
plot (Figure 5B) and Wood’s (1980) Hf-Th-Ta ternary diagram (Figure 5C), but shows exclusive back-arc basin
basalt affinity on Cabanis and Lecolle’s (1989) Y-La-Nb ternary diagram (Figure 5D). Pearce’s (1996) N-MORBnormalized abbreviated ‘spider’ diagrams, which are used to discriminate different tectonic environments, also
show that the Ennadai mafic volcanic rocks have a transitional setting between MORB and VAB (Figure 6A and B).
Felsic volcanic rocks show profiles typical of more evolved volcanic arc rocks (Figure 6C; Pearce, 1996), with
negative Nb and Ti anomalies.
Saskatchewan Geological Survey
5
Summary of Investigations 2004, Volume 2
Figure 4 - Volcanic arc granite rare earth element normalized plot for: A) the Archean migmatites and tonalitic gneisses and
B) the Archean granitic intrusive rocks.
Oxide, sulphide, and silicate facies iron formations are typically interlayered on a metre to ten metre scale with the
mafic volcanic rocks, and with the new Federal-Provincial aeromagnetic maps can be traced for 10 to 20 km along
strike. They were sampled at various locations in the main Ennadai Greenstone Belt, at Bonokoski Lake, and
elsewhere in the Phelps Lake region. The iron content of these samples ranges from 7.77 to 50.34%, the former
from a sample consisting mostly of the ‘cherty’ part of a banded oxide-facies iron formation, and the latter from a
metre-thick magnetite layer at Bonokoski Lake. Samples 0111-CAMP and 0311-2056 are massive pyrrhotitebearing boulders. None of the iron formations contained any notable gold concentrations and only sample 0311-
Saskatchewan Geological Survey
6
Summary of Investigations 2004, Volume 2
Figure 5 - Chemical diagrams for the Ennadai Group volcanic rocks. A) Jensen (1976) cation plot. B), C), and D) Basalt
discrimination diagrams; CAB, calc-alkaline basalt; IAT, island arc tholeiite; E-MORB, evolved; EVM, Ennadai mafic
volcanic rocks; EVM Bono, from Bonokoski Lake; EVFr, Ennadai felsic volcanic (rhyolitic) rocks.
2056 had a higher copper content of 500 ppm. With the exception of the massive iron sulphide boulder (0311-2056)
and a notably garnet-rich silicate facies boulder from Phelps Lake, all the samples have nearly identical chondritenormalized extended element profiles (Figure 7). They have a slightly elevated LREE signature, a prominent
positive Eu anomaly, and very flat HREE signature. Positive Eu anomalies in iron formations typically result from
hot hydrothermal fluids, with low detrital input, and can be associated with volcanic-hosted massive sulphide
(VHMS) deposits (Peter, 2003). Sample 0311-2056 collected east of Misaw Lake, has no Eu anomaly, which
according to Peter (2003) might suggest there is a greater clastic component or perhaps the rocks were more distal
from the fluid source. The extended trace element plot also reveals a strong negative Nb anomaly, moderate to
strong negative Zr and very strong negative Ti anomaly, which would all be consistent with chemical sedimentation
having little detrital material being contributed to the sediment.
5. Hurwitz Group (Wollaston Group)
Samples of Hurwitz Group rocks included pelite, ferruginous pelite, and various related facies of iron formation,
calc-silicates and marbles, and rhyolite (Appendix 4). A single pelitic gneiss sample from the Wollaston Domain
was collected for comparison to the Hurwitz Group pelites (Appendix 4).
Two analyses of lower amphibolite facies Hurwitz Group pelites and one analysis of an upper amphibolite facies
Wollaston Supergroup pelite are shown on a chondrite-normalized extended trace element plot (Figure 8A). They
have nearly identical profiles, with a steep LREE profile relative to the HREE and a negative Eu anomaly, which is
characteristic of the North American Shale Composite (see Peter, 2003). The pelitic rocks also have consistent
negative Nb, Zr, and Ti anomalies.
Saskatchewan Geological Survey
7
Summary of Investigations 2004, Volume 2
The ferruginous pelites of the
Hurwitz Group typically contain
several percent magnetite or
pyrite and locally develop into
banded iron formations of oxide
or sulphide facies. They are most
common in the lower pelitic
sequence (Harper et al., 2001,
2002a). Their iron content ranges
from 7.1 to 35.7% and they
generally have background
concentrations of base and
precious metals (Appendix 4).
These rocks have nearly identical
chondrite-normalized extended
element profiles to the ‘normal’
pelites (Figures 8A and 8B). In
comparison to the Ennadai
Group iron formations, the
Hurwitz Group ferruginous
pelites and iron formations have
parallel profiles, but are a factor
of 10 times higher than the
Ennadai Group (compare with
Figure 7). They also have a
slightly negative Eu anomaly,
which is characteristic of
shale/mudstone-hosted iron
formations and similar to Red
Sea metalliferous sediments
(Peter, 2003). The Hurwitz
Group ferruginous pelites and
iron formations also have strong
negative Nb and Ti anomalies
and a neutral to weak negative Zr
anomaly. Sample 0311-1146,
from a boulder of specular
hematite-bearing Hurwitz Group
iron formation, has a parallel
profile to the majority of the
samples, but is more than a factor
of 10 lower than the other
ferruginous Hurwitz Group
rocks, suggesting perhaps an
association with volcanic rocks.
Two dolomitic marble and two
hematitic quartz-veined marble
samples (Appendix 4) were part
of a B.Sc. project by Senkow
(2003) to determine the correct
mineralogy of a suspected
rhodochrosite occurrence at the
southwest end of Many Islands
Lake. Petrography,
Figure 6 - Abbreviated N-MORB-normalized “spider” diagrams (after Pearce, 1996)
cathodoluminescence, and X-ray
for Ennadai Group volcanic rocks; A) regional samples, B) samples from Bonokoski
diffraction analyses were
Lake, and C) felsic volcanic rocks.
completed on several samples, in
addition to wholerock geochemistry to determine if the rocks were enriched in Mn and/or other metals (e.g., Cu, Pb,
Zn, and Ag). Manganese enrichment was not noted and only one sample (0211-1003) had slightly anomalous Cu
and Zn concentrations relative to the other samples. Rhodochrosite was not identified, but the pink to red carbonate
mineral was identified as dolomite and/or ferroan dolomite (Senkow, 2003; D. Quirt, pers. comm., 2004) and was
accompanied by two types of hematite. The marble samples and two calc-silicate samples have similar chondrite-
Saskatchewan Geological Survey
8
Summary of Investigations 2004, Volume 2
Figure 7 - Chondrite-normalized extended element profiles for various Ennadai Group iron formation facies. Chondrite
normalizing values from Taylor and McLennan (1985).
normalized extended trace element profiles (Figures 8C and 8D) as the pelitic rocks, but have a stronger negative Ti
anomaly, a neutral Y to slightly positive Y anomaly, and both negative and positive Zr anomalies.
6. Paleoproterozoic Intrusions
Two periods of Paleoproterozoic granitoid plutonism have been documented in the Northwest Territories and
Nunavut (Peterson and van Breemen, 1999; Peterson et al., 2000, 2002) and are referred to as the Hudson granitoids
(ca. 1850 to 1810 Ma) and the Nueltin granite suite (ca. 1760 to 1750 Ma); the latter has an associated felsic
volcanic suite, the Pitz Formation. In the Phelps Lake area weakly foliated granite, and massive leucotonalite and
leucogranite intruded Hurwitz Group rocks, confirming their Proterozoic age. Massive, porphyritic, fluorite-bearing
granites were considered to be Nueltin-type granites (Appendix 5). The fluorine content of three fluorite-bearing
samples (0211-1162, -1163, and -1177) from the Spratt Lake area ranged from 0.11 to 0.31%, whereas, an analysis
of a non-fluorite-bearing sample yielded 0.03% F (Appendix 5). Aphanitic felsite, found in two locations in the
northeast quarter of 64M (Harper et al., 2002a), were thought to be possible equivalents of the Pitz Formation. A
single sample of the felsite is included in Appendix 5 and plotted with the Nueltin granites. Several of these
Proterozoic intrusions have now been dated by U-Pb zircon (Heaman et al., 2003; Harper et al., 2004) and U-Pb
SHRIMP zircon (Harper and van Breemen, this volume) techniques, establishing affinities to both periods of
plutonism. A weakly deformed, east-trending gabbro dyke that intruded strongly foliated granite in the southeast
margin of the Striding-Athabasca mylonite zone is believed to be a Proterozoic-aged dyke, and is included in
Appendix 5. Also of interest is a sample (0211-1501) collected from a boulder north of Keseechewun Lake of a,
presumably post-tectonic, massive lepidolite-bearing pegmatite (Appendix 5).
Chemically the Proterozoic Hudson and Nueltin-type granites are silicic, potassic rocks (Appendix 5) that are
characterized as calc-alkaline and peraluminous granites (Figures 9A and 9B). On the granite discrimination
diagrams of Pearce et al. (1984), they show a stronger affinity to syn-COLG (Figures 9C and 9D). Sample 02111163, a REE-enriched fluoritic granite plots in the within-plate granite (WPG) field (Figures 8C and 8D); this
probably reflects an associated Y enrichment. On the chondrite-normalized extended trace element diagrams
(Figures 10A and 10B), the Hudson and Nueltin granites have very similar profiles, with enriched LREE relative to
the HREE, strong negative Nb and Ti anomalies, and a generally weak negative Eu anomaly. These features are
similar to the chemical patterns obtained by Peterson et al. (2002) for Hudson and Nueltin granites in Nunavut.
Other features in common are the abundant inherited zircon cores in the Hudson granites and enriched εNd value of
-10.74 for one of the SHRIMP-dated Hudson granites (see Harper and van Breemen, this volume), also indicative of
crustal melting of an Archean source.
Saskatchewan Geological Survey
9
Summary of Investigations 2004, Volume 2
Saskatchewan Geological Survey
10
Summary of Investigations 2004, Volume 2
Figure 8 - Chondrite-normalized extended element diagrams for Hurwitz Group rocks. A) Hurwitz and Wollaston pelites, B) Hurwitz ferruginous rocks and iron
formations, C) Hurwitz marbles, and D) Hurwitz calc-silicate rocks. Chondrite normalizing values from Taylor and McLennan (1985).
Figure 9 - Geochemical diagrams for the Proterozoic intrusions. A) Alkalis versus silica (Frost et al., 2001); B) ASI Index
versus Na+K/Al (Frost et al., 2001); and C) and D) Tectonic environment granite discrimination diagrams (Pearce et al.,
1984).
The lepidolite pegmatite sample (0211-1501, Appendix 5) has very high concentrations of Li, Rb, Cs, Nb, Ta, Sn,
Be, Tl, Ga, and Ge as well as exceptionally low MgO, CaO, Fe2O3, TiO2, Sr, Ba, and REE concentrations. Some of
these features are clearly discernible on the chondrite-normalized extended element diagram (Figure 11) comparing
the pegmatite with selected Hudson and Nueltin granites. This chemical signature is characteristic of S-type,
complex rare element granitic pegmatites (Breaks and Moore, 1992; Shearer et al., 1992; Sillitoe, 1996) as well as
ore-grade lithium pegmatites such as the Bernic Lake pegmatites (Goad and Černý, 1981). These types of
pegmatites typically form from volatile-rich magmas commonly associated with post-tectonic granitic intrusions
(London, 1992; Shearer et al., 1992). The fluoritic Nueltin granite suite is a likely candidate from which volatilerich magma could have originated. The Li content of several of these granites at Spratt Lake average about 45 ppm,
which is just above the average granite content of 30 ppm (see Table B in MacDougall, 2002). Clasts of this type of
pegmatite generally are not likely to travel very far, thus boulder prospecting should be effective in finding a source
area for this prospective rare element pegmatite.
7. Iron Sulphide– and Quartz Vein–bearing Samples
In addition to the samples of iron formation and other intrusion- and mafic volcanic-hosted mineral occurrences
listed in Appendices 2 to 5, 11 samples of iron sulphide–bearing rocks, many of which were locally transported
boulders, were collected and analysed for a suite of trace elements (Appendix 6). Most of these samples are pyrite
and or pyrrhotite bearing with or without trace amounts of chalcopyrite. Several samples contained pyritic quartz
veins and were collected specifically to check for possible gold enrichment. A number of these samples contain
threshold to anomalous concentrations of Cu (maximum 883 ppm), Zn (maximum 1180 ppm), and Au (maximum
533 ppb). Sample 0111-4032, a mafic volcanic rock with pyritic quartz veins and which contains 533 ppb Au, was
collected from an area of known mafic volcanic-hosted auriferous quartz vein showings, approximately 6.5 km west
of the southwest end of Hatle Lake. This location is also near the iron formation-hosted Nirdac Creek gold
occurrence (Assessment Files 64M-0006 and 64M-14-0006).
Saskatchewan Geological Survey
11
Summary of Investigations 2004, Volume 2
Figure 10 - Chondrite-normalized extended element diagrams for A) Hudson granites, and B) Nueltin granites and felsite.
Chondrite normalizing values are from Taylor and McLennan (1985).
8. Conclusions
Based on the geochemical analysis of the major rock units from the Phelps Lake Project presented here the
following conclusions can be made:
1) Archean tonalitic migmatites and tonalite gneiss intrusions are calcic, peraluminous rocks, with apparent VAG
affinity, high Sr/Y and La/Yb ratios, and neutral to positive Eu anomaly. These characteristics are similar to
those of Archean tonalite-trondhjemite-granodiorite suites, that are thought to have formed through partial
melting of a shallow subducting, garnet-bearing, basaltic crust (Drummond et al., 1996; Smithies and
Champion, 2000).
2) Archean granitic intrusions are calc-alkalic, peraluminous rocks with transitional VAG to syn-collisional
granite affinities.
3) The Archean Ennadai Group mafic volcanic rocks are subalkaline, high-Fe to high-Mg tholeiites with
transitional MORB to VAB character, which is typical of volcanic arc-back arc basin settings. The felsic
Saskatchewan Geological Survey
12
Summary of Investigations 2004, Volume 2
Saskatchewan Geological Survey
13
Summary of Investigations 2004, Volume 2
Figure 11 - Chondrite-normalized extended element diagram comparing a lepidolite pegmatite with Hudson and Nueltin granites. Chondrite normalizing values are from
Taylor and McLennan (1985).
volcanic rocks are calc-alkaline, and typical of a volcanic arc setting. The chemical signature of the various iron
formation facies particularly with a strong positive Eu anomaly are typical of iron formations formed from
hydrothermal fluids and possibly associated with volcanic-hosted massive sulphide deposits.
4) Several samples of weakly to strongly iron sulphide–bearing volcanic rocks and mafic volcanic-hosted pyritic
quartz veins, although not providing spectacular geochemical results indicate there may be potential for base
and precious metal occurrences/deposits in the region.
5) Hurwitz Group pelitic and ferruginous pelitic schists and associated iron formations have similar rare earth
element profiles as the North American Shale Composite. The general negative Eu anomaly of these
ferruginous pelites and iron formations is characteristic of shale/mudstone-hosted iron formations and Red Sea
metalliferous sediments (Peter, 2003); however, they show only background base and precious metal
concentrations.
6) The Proterozoic intrusions are subdivided into two age groups, the 1.85 to 1.8 Ga Hudson granite and the 1.76
to 1.75 Ga Nueltin granite suites. Chemically, both suites are silicic, potassic, calc-alkaline, and peraluminous,
with syn-COLG affinity. The Nueltin granites have a tendency to be porphyritic, fluorite-bearing, and may be
REE-enriched.
7) An undeformed, lepidolite pegmatite boulder, that has very high concentrations of Li, Rb, Cs, Nb, Ta, Sn, Be,
Tl, Ga, and Ge, is similar to complex, rare element pegmatites of the Bernic Lake type (Goad and Černý, 1981;
Breaks and Moore, 1992). Such pegmatites form from volatile-rich magmas commonly associated with posttectonic granitic intrusions. The fluoritic Nueltin granite suite is a likely candidate from which the rare element
pegmatite could have originated, and thus the boulder’s source may lie nearby to the north or northeast where
several such plutons exist.
9. Acknowledgments
The author wishes to extend his thanks and appreciation to all the personnel from 2001 to 2003 that helped make
this project a success and for their parts in collecting the samples reviewed in this paper. Thanks to Ralf Maxeiner
and Colin Card for their careful edit of the paper.
10. References
Aspler, L.B. and Chiarenzelli, J.R. (1996): Stratigraphy, sedimentology and physical volcanology of the Henik
Group, Central Ennadai-Rankin greenstone belt, Northwest Territories, Canada: Late Archean paleogeography
of the Hearne Province and tectonic implications; Precamb. Resear., v77, p59-89.
Breaks, F.W. and Moore Jr., J.M. (1992): The Ghost lake Batholith, Superior Province of northwestern Ontario: A
fertile, S-type, peraluminous granite–rare-element pegmatite system; Can. Mineral., v30, p835-875.
Cabanis, B. and Lecolle, M. (1989): Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series
volcanicques et la mise en evidence des processus del melange et/ou de conatmanination crustale; C.R. Acad.
Sci. Ser. II, v309, p2023-2029.
Campbell, J.E. (2001): Phelps Lake Project: Highlights of the Quaternary investigations in the Bonokoski Lake area
(NTS 64M-11, -12, -13, and -14); in Summary of Investigations 2001, Volume 2, Saskatchewan Geological
Survey, Sask. Energy Mines, Misc. Rep. 2001-4.2, CD-ROM, p19-27.
Chiarenzelli, J.R. and Macdonald, R. (1986): A U-Pb zircon date for the Ennadai Group; in Summary of
Investigations 1986, Saskatchewan Geological Survey, Sask. Energy Mines, Misc. Rep. 86-4, p112-113.
Coulson, I.M. (2002): The Geology of the Archean Ennadai Greenstone Belt, McLintock Lake Area (Part of NTS
64M-13), Northeast Saskatchewan; unpubl. report prepared for Sask. Energy Mines, 30p.
Coulson, I.M., Kraus, J., Harper, C.T., and Shives, R.B.K. (2001): Some aspects on the geology of the Archean
Ennadai–Rankin Greenstone Belt, northeast Saskatchewan; in Summary of Investigations 2001, Volume 2,
Saskatchewan Geological Survey, Sask. Energy Mines, Misc. Rep. 2001-4.2, CD-ROM, p43-49.
Davis, W.J., Hanmer, S., Aspler, L., Sandeman, S., Tella, S., Zaleski, E., Relf, C., Ryan, J., Berman, R., and
MacLachlan, K. (2000): Regional differences in the Neoarchean crustal evolution of the Western Churchill
Province: Can we make sense of it?; GeoCanada 2000, Calgary, May 29 to June 2, conference CD-ROM, abstr.
#864.
Saskatchewan Geological Survey
14
Summary of Investigations 2004, Volume 2
Drummond, M.S., Defant, M.J., and Kepezhinskas, P.K. (1996): Petrogenesis of slab-derived trondhjemite-tonalitedacite/adakite magmas; Trans. Roy. Soc. Edinburgh, v87, p205-215.
Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D. (2001): A geochemical
classification for granitic rocks; J. Petrol., v42, p2033-2048.
Goad, B.E. and Černý, P. (1981): Peraluminous pegmatitic granites and their pegmatite aureoles in the Winnipeg
River district, southeastern Manitoba; Can. Mineral., v19, p177-194.
Hanmer, S. (1997): Geology of the Striding-Athabasca Mylonite Zone, northern Saskatchewan and southeastern
District of Mackenzie, Northwest Territories; Geol. Surv. Can., Bull. 501, 92p.
Hanmer, S. and Kopf, C. (1993): The Snowbird tectonic zone in District of Mackenzie, Northwest Territories; in
Current Research, Part C, Canadian Shield, Geol. Surv. Can., Pap. 93-1C, p41-52.
Harper, C.T., Campbell, J.E., and MacDougall, D.G. (2002b): Phelps Lake Project: Rock and till geochemistry of
the Bonokoski Lake area (NTS 64M-NW) and mineral occurrence geochemistry of Phelps Lake area (NTS
64M); Sask. Industry Resources, Data File 21, 1p and 1diskette.
Harper, C.T., Heaman, L.M., Hartlaub, R.P., and Wodicka, N. (2004): New Geochronological Constraints on the
Precambrian history of the Hearne Province, Northeast Saskatchewan; Geol. Assoc. Can./Mineral. Assoc. Can,
Jt. Annu. Meet., St. Catharines, May 12 to 14, Abstr. #GS07-04.
Harper, C.T., Kraus, J., Demmans, C.J., Huebert, C., Coulson, I.M., and Rainville, S. (2001): Phelps lake Project:
Geology and mineral potential of the Bonokoski Lake area (NTS 64M-11, -12, -13, and -14); in Summary of
Investigations 2001, Volume 2, Saskatchewan Geological Survey, Sask. Energy Mines, Misc. Rep. 2001-4.2,
CD-ROM, p3-18.
Harper, C.T., Savage, D., and Bailey, K. (2003): Phelps Lake Project: Geology of the Misaw Lake area (part of
64M-NE) and compilation mapping in the south half of the Phelps Lake sheet; in Summary of Investigations
2003, Volume 2, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2003-4.2, CD-ROM,
Paper A-4, 17p.
Harper, C.T., Wolbaum, R.J., Thain, S., Senkow, M., Weber, D., Gunning, M., and MacLachlan, K. (2002a): Phelps
Lake Project: Geology and mineral potential of the Keseechewun Lake–Many Islands Lake area (parts of NTS
64M-9, -10, -15, and -16); in Summary of Investigations 2002, Volume 2, Saskatchewan Geological Survey,
Sask. Industry Resources, Misc. Rep. 2002-4.2, CD-ROM, Paper A-1, 18p.
Heaman, L.M., Hartlaub, R.P., Ashton, K.E., Harper, C.T., and Maxeiner, R.O. (2003): Preliminary results of the
2002-2003 Saskatchewan Industry and Resources Geochronology Program; in Summary of Investigations
2003, Volume 2, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2003-4.2, CD-ROM,
Paper A-3, 4p.
Jensen, L.S. (1976): A new cation plot for classifying subalkalic volcanic rocks; Ont. Geol. Surv., Misc. Pap. 66,
22p.
LeCheminant, A.N. and Heaman, L.M. (1989): Mackenzie igneous events, Canada: Middle Proterozoic hotspot
magmatism associated with ocean opening; Earth Planet. Sci. Lett., v96, p38-48.
London, D. (1992): The application of experimental petrology to the genesis and crystallization of granitic
pegmatites; Can. Mineral., v30, p499-540.
Macdonald, R. (1984): Notes on the Ennadai Group; in Summary of Investigations 1984, Saskatchewan Geological
Survey, Sask. Energy Mines, Misc. Rep. 84-4, p76-77.
MacDougall, D.G. (2001): Metallogeny of mineral occurrences in the Phelps Lake region (NTS 64M); ); in
Summary of Investigations 2001, Volume 2, Saskatchewan Geological Survey, Sask. Energy Mines, Misc. Rep.
2001-4.2, CD-ROM, p28-42.
__________ (2002): Rare earth element and other mineral occurrences in the Phelps Lake region (NTS 64M); in
Summary of Investigations 2002, Volume 2, Saskatchewan Geological Survey, Sask. Energy Mines, Misc. Rep.
2002-4.2, CD-ROM, Pap. B-1, 23p.
Saskatchewan Geological Survey
15
Summary of Investigations 2004, Volume 2
Martin, H. and Moyen, J-F. (2002): Secular changes in tonalite-trondhjemite-granodiorite composition as markers
of the progressive cooling of Earth; Geol., v30, no4, p319-322.
Meschede, M. (1986): A method of discriminating between different types of mid-ocean ridge basalts and
continental tholeiites with the Nb-Zr-Y diagram; Chem. Geol., v56, p207-218.
Orrell, S.E., Bickford, M.E., and Lewry, J.F. (1999): Crustal evolution and age of thermotectonic reworking in the
western hinterland of the Trans-Hudson Orogen, northern Saskatchewan; Precamb. Resear., v95, p187-223.
Pearce, J.A. (1996): A user’s guide to basalt discrimination diagrams; in Wyman, D.A. (ed.), Trace element
geochemistry of volcanic rocks: Applications for massive sulphide exploration; Geol. Assoc. Can., Short
Course Notes, v12, p79-113.
Pearce, J.A., Lippard, S.J., and Roberts, S. (1984): Characteristics and tectonic significance of suprasubduction zone
ophiolites; in Kokelaar, B.P. and Howells, M.F. (eds.), Marginal Basin Geology, Blackwell Scientific
Publications, Oxford, Geol. Soc. London, Spec. Publ. 81, p53-75.
Peter, J.M. (2003): Ancient iron formations: Their genesis and use in the exploration for stratiform base metal
sulphide deposits, with examples from the Bathurst Mining Camp; in Lentz, D.R. (ed.), Geochemistry of
Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-forming Environments,
Geol. Assoc. Can., GeoText 4, p145-176.
Peterson, T.D. and Lee, C. (1995): Pre-Dubawnt plutonism and deformation in the Nicholson Lake–Dubawnt Lake
area, Northwest Territories; in Current Research, Canadian Shield, Geol. Surv. Can., 1995-C, p11-18.
Peterson, T.D. and van Breemen, O. (1999): Review and progress report of Proterozoic granitoid rocks of the
western Churchill Province, Northwest Territories (Nunavut); in Current Research, Canadian Shield, Geol.
Surv. Can., 1999-C, p119-127.
Peterson, T.D., van Breemen, O., Sandeman, H.A., and Cousens, B. (2002): Proterozoic (1.85-1.75 Ga) igneous
suites of the Western Churchill Province: Granitoid and ultrapotassic magmatism in a reworked Archean
hinterland; Precamb. Resear., v119, p73-100.
Peterson, T.D., van Breemen, O., Sandeman, H.A., and Rainbird, R.H. (2000): Proterozoic (1.85-1.75 Ga) granitoid
plutonism and tectonics of the Western Churchill Province; GeoCanada 2000, Calgary, May 29 to June 2,
conference CD-ROM, abstr. #539.
Rainville, S. (2002): Geochemical investigation and geological mapping of possible Ennadai-Rankin metavolcanic
rocks in the Bonokoski Lake area, northeastern Saskatchewan; unpubl. B.Sc. thesis, Univ. Regina, 52p.
Rainville, S., Harper, C.T., Watters, B., and Coulson, I.M. (2002): Petrology and lithogeochemistry of mafic
metavolcanic rocks at Bonokoski Lake, northwestern Hearne Province, northeast Saskatchewan: Probable
equivalents of the Ennadai-Rankin Greenstone Belt; Geol. Assoc. Can./Miner. Assoc. Can., Jt. Annu. Meet.,
Saskatoon, May 27 to 29, Abstr. Vol. 27, p95.
Reilly, B.A. (1989): Bedrock geological mapping, Hatle Lake area (part of NTS 64M-13 and -14); in Summary of
Investigations 1989, Saskatchewan Geological Survey, Sask. Energy Mines, Misc. Rep. 89-4, p11-16.
__________ (1993): Bedrock geological mapping, Hatle Lake area (part of NTS 64M-13 and -14); Sask. Energy
Mines, Open File Rep. 93-2, 21p.
Sandeman, H., Davis, W., Hanmer, S., MacLachlan, K., Peterson, T., Ryan. J., Tella, S., Cousens, B., and Relf, C.
(2000): Geochemistry of Neoarchean plutonic rocks of the Hearne Domain, Western Churchill Province,
Nunavut: Granitoids associated with the formation and stabilization of “arc-like” oceanic crust; GeoCanada
2000,Calgary, May 29 to June 2, conference CD-ROM, abstr. #810.
Selbekk, R.S. and Skjerlie, K.P. (2000): Tonalite magma formation in island arcs by anatexis in the presence of
subducted seawater: Ordovician analogue of Archean tonalites?; Fall Meeting 2000, Eos Trans., AGU, 81(48),
abstr. V72B-03.
Senkow, M.D. (2003): Investigation of a presumed rhodochrosite occurrence in Hurwitz Group carbonate rocks,
Many Islands Lake area, northeast Saskatchewan; unpubl. B.Sc. thesis, Univ. Regina, 40p.
Saskatchewan Geological Survey
16
Summary of Investigations 2004, Volume 2
Shearer, C.K., Papike, J.J., and Jolliff, B.L. (1992): Petrogenetic links among granites in the Harney Peak rareelement granite–pegmatite system, Black Hills, South Dakota; Can. Mineral., v30, p785-809.
Sillitoe, R.H. (1996): Granites and metal deposits; Episodes, v19, p126-133.
Smithies, R.H. and Champion, D.C. (2000): The Archean high-Mg diorite suite: Links to tonalite-trondhjemitegranodiorite magmatism and implications for Early Archean crustal growth; J. Petrol., v41, p1653-1671.
Smithies, R.H., Champion, D.C., and Cassidy, K.F. (2003): Formation of Earth’s early Archean continental crust;
Precamb. Resear., v127, p89-101.
Taylor, S.R. and McLennan, S.M. (1985): The Continental Crust: Its Composition and Evolution. An Examination
of the Geological Record Preserved in Sedimentary Rocks; Blackwell Publications, Oxford, 328p.
Tella, S., LeCheminant, A.N., Sanborn-Barrie, M., and Venance, K.E. (1997): Geology and structure of parts of
MacQuoid Lake map area, District of Keewatin, Northwest Territories; in Current Research, Canadian Shield,
Geol. Surv. Can., 1997-C, p123-132.
Williams, M.L., Jercinovic, M.J., and Terry, M.P. (1999): Age mapping and dating of monazite on the electron
microprobe: Deconvoluting multistage tectonic histories; Geol., v27, p1023-1026.
Wood, D.A. (1980): The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to
establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province; Earth
Planet. Sci. Lett., v50, p11-30.
Saskatchewan Geological Survey
17
Summary of Investigations 2004, Volume 2
Appendix 1 – Analytical Techniques
The following procedures were used by Activation Laboratories Ltd. (Actlabs) in processing the rock samples
supplied by Saskatchewan Industry and Resources. The samples were prepared for analyses by crushing the sample
to minus 10 mesh, mechanically splitting the sample and then pulverizing with mild steel to obtain at least 95% at
minus 150 mesh. For research quality analyses, Actlabs uses a lithium metaborate–tetraborate fusion ICP technique
for the whole rock package (major oxides plus Ba, Sr, Y, Sc, Zr, Be, and V) and for the 45 trace and rare earth
element ICP-MS package (also includes Ba, Sr, Y, Zr, and V). To obtain lower detection limits for certain elements
(Ag, As, Au, Bi, Br, Cd, Cr, Cu, Ir, Ni, S, Sc, Se, and Zn), some of which are not included in the standard trace
element package; the analyses are done by INAA. Fluorine was done as an add-on to the above package by ISE.
Lithium was analysed by ICP-MS following an aqua regia extraction. The mineralized samples listed in Appendix
6 were encapsulated, irradiated, and measured in a multielement mode by INAA for Au plus 34 trace elements at
enhanced detection limits.
Every tenth sample in a submitted batch underwent a replicate analysis. In addition, internal Actlabs standards were
run with each batch and those values included along with the accepted values with each report. The accuracy of
analyses was consistently very high.
Saskatchewan Geological Survey
18
Summary of Investigations 2004, Volume 2
Appendix 2 – Geochemical Data for the Archean Migmatites and Intrusive Rocks of the Phelps Lake Region
UTM Coordinates are for Zone 13, Based on NAD 83.
Note: Gb, gabbro; DM, dioritic migmatite; TM, tonalitic migmatite; Tg, tonalite gneiss; GL, leucogranite gneiss; G, granite gneiss; al, allanite; n/a, not analysed; and py, pyrite; negative values are below detection limit for that element.
SAMPLE
Rock Name
UTM E
UTM N
SiO2
TiO2
Al2O3
Fe2O3
MnO
MgO
CaO
Na2O
K2O
P2O5
LOI
TOTAL
Cr
Ni
Co
Sc
V
Cu
Pb
Zn
Bi
Cd
In
Sn
W
Mo
S
As
Se
Sb
Ag
Ir
Au
Rb
Cs
Ba
Sr
Tl
Ga
Ge
Ta
Nb
Hf
Zr
Y
Th
U
La
Ce
Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
F
Br
Be
%
%
%
%
%
%
%
%
%
%
%
%
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
%
ppm
ppm
ppm
ppm
ppb
ppb
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
%
ppm
ppm
0311-1030
Gb
641970
6617876
50.68
0.255
6.26
12.38
0.256
15.89
10.79
0.79
0.86
0.02
1.83
100.00
220
178
68
64
196
44
4
86
0.8
1.3
-0.1
-1
-0.5
-2
0.005
-0.5
-3
0.6
-0.3
-5
-2
50
13.3
57
35
0.50
10
2.2
0.07
1.7
0.4
8
6.1
0.13
0.07
3.36
6.18
0.84
3.31
0.75
0.346
0.84
0.15
0.98
0.21
0.71
0.104
0.69
0.113
n/a
-0.5
1
0111-339
DM
594707
6625345
65.61
0.495
15.09
5.56
0.067
2.75
3.44
3.74
2.43
0.17
0.65
100.00
124
53
17
11.3
90
50
22
75
0.4
n/a
-0.1
-1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
-2
87
5.0
849
657
0.57
19
1.0
0.37
4.7
3.7
141
11.3
6.57
1.40
35.4
73.3
7.93
30.5
4.81
1.31
3.48
0.44
2.24
0.41
1.09
0.144
0.98
0.150
n/a
-0.5
1
Saskatchewan Geological Survey
0111-378
TM
584522
6599320
72.04
0.219
16.12
1.50
0.015
0.43
2.91
5.55
1.08
0.08
0.23
100.17
8
-20
2
1.4
16
-10
19
80
0.3
n/a
-0.1
-1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
-2
42
2.3
269
790
0.32
17
0.6
0.09
1.7
3.4
145
1.8
2.89
0.54
19.5
40.4
4.11
15.4
2.29
0.784
1.37
0.13
0.44
0.06
0.14
0.015
0.12
0.015
n/a
-0.5
-1
0111-128
TM
557441
6626201
73.09
0.127
15.46
1.08
0.009
0.50
2.92
5.24
1.32
0.05
0.29
100.08
-20
-20
1
-1
14
11
9
-30
-0.1
n/a
-0.1
1
-0.5
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
32
0.4
397
624
0.20
18
0.5
1.07
1.7
2.5
93
0.5
0.25
0.17
4.19
7.88
0.79
2.80
0.43
0.339
0.21
0.03
0.10
0.02
0.05
0.009
0.07
0.010
n/a
NA
2
0311-5002
TM
636870
6608540
68.03
0.330
15.78
3.98
0.055
1.45
3.59
4.68
1.30
0.21
0.50
99.91
21
20
9
7.1
55
19
18
119
-0.1
0.7
-0.1
-1
-0.5
-2
0.016
1.3
-3
0.4
-0.3
-5
3
75
2.8
331
447
0.62
18
0.7
0.21
3.2
1.3
59
6.2
5.94
0.79
35.1
67.8
7.63
27.4
3.80
0.958
2.75
0.25
1.16
0.19
0.52
0.067
0.44
0.067
n/a
-0.5
2
0211-1093
Tg
627169
6619209
65.96
0.539
16.13
4.81
0.056
1.73
4.54
4.37
1.42
0.14
0.60
100.31
47
-20
13
8.2
88
55
10
98
-0.1
n/a
-0.1
-1
-0.5
-2
n/a
1.8
-3
-0.1
-0.5
-5
-2
38
0.7
524
619
0.24
19
0.9
0.23
4.9
4.1
174
8.8
7.22
0.27
42.0
75.8
7.25
25.0
3.90
1.34
2.54
0.33
1.67
0.30
0.87
0.105
0.70
0.094
n/a
-0.5
1
0211-1140
Tg
616815
6607912
72.81
0.119
15.06
1.13
0.019
0.30
2.20
4.45
2.98
0.04
0.25
99.36
8
2
-1
1.4
11
12
24
94
-0.1
-0.3
-0.1
-1
-0.5
-2
-0.001
-0.5
-3
-0.1
-0.3
-5
-2
128
12.0
732
563
0.13
18
-0.5
0.21
4.4
1.8
54
2.0
2.56
0.68
6.30
12.1
1.24
4.28
0.82
0.258
0.52
0.08
0.37
0.06
0.17
0.024
0.17
0.026
n/a
-0.5
2
0311-5003
Tg
641639
6613638
70.27
0.194
15.92
1.91
0.025
0.65
3.11
5.04
1.33
0.07
0.50
99.02
18
12
5
3.1
25
5
19
74
-0.1
-0.3
-0.1
-1
-0.5
-2
0.005
2.6
-3
0.3
0.4
-5
4
37
2.0
438
701
0.31
18
-0.5
0.13
1.6
2.0
79
2.9
1.75
0.53
9.93
17.9
2.07
7.36
1.27
0.373
0.87
0.10
0.52
0.09
0.25
0.035
0.23
0.036
n/a
-0.5
2
0311-5007
Tg
598222
6569811
66.41
0.374
15.27
3.69
0.054
2.34
4.36
4.78
1.61
0.15
0.73
99.76
67
52
12
7.2
68
4
10
81
-0.1
0.6
-0.1
1
-0.5
-2
0.002
1.4
-3
-0.1
-0.3
-5
-2
53
1.9
360
775
0.06
16
0.8
0.22
2.8
2.8
120
6.8
4.68
0.53
24.3
48.4
6.14
23.6
3.80
0.956
2.74
0.28
1.25
0.20
0.57
0.076
0.54
0.081
n/a
-0.5
2
0311-1063
Tg
632290
6637383
72.45
0.171
14.65
1.84
0.030
0.44
2.25
4.58
2.16
0.06
0.55
99.19
14
6
3
2.4
19
3
11
65
-0.1
0.4
-0.1
-1
-0.5
-2
-0.001
1.5
-3
0.2
-0.3
-5
-2
57
2.8
539
329
0.37
18
0.8
0.71
5.4
2.5
102
4.6
2.87
0.48
13.3
23.7
2.41
8.36
1.49
0.481
1.03
0.15
0.75
0.13
0.40
0.057
0.40
0.063
n/a
-0.5
2
0311-2059
Tg
647700
6623925
66.99
0.256
16.48
3.23
0.049
1.22
3.97
4.47
1.18
0.07
0.83
98.75
19
17
8
4.8
38
5
13
64
0.2
0.7
-0.1
-1
0.6
-2
0.044
1.1
-3
2.7
-0.3
-5
6
227
140
286
435
2.81
17
0.7
0.33
4.2
2.4
104
11.5
2.28
0.49
11.7
21.4
2.31
8.45
1.60
0.528
1.70
0.28
1.65
0.35
1.23
0.196
1.30
0.204
n/a
1
2
0211-1116
Tg,py, al
617561
6629622
73.33
0.119
14.61
1.75
0.017
0.36
3.12
4.81
0.70
0.03
0.41
99.26
-5
2
-1
1.5
12
31
32
69
-0.1
-0.3
-0.1
-1
-0.5
-2
0.040
1.1
-3
0.2
-0.3
-5
-2
46
17.2
156
450
0.45
17
0.7
0.20
4.6
1.5
50
3.7
76.3
1.68
58.8
111
12.5
42.1
5.88
0.619
2.63
0.20
0.88
0.12
0.30
0.034
0.21
0.029
n/a
-0.5
2
0311-5001
GL
636915
6608542
72.86
0.066
14.74
1.00
0.013
0.16
1.25
3.42
5.50
0.04
0.37
99.43
11
7
1
1
7
12
47
68
-0.1
-0.3
-0.1
-1
-0.5
-2
0.011
1.6
-3
0.3
0.4
-5
-2
132
1.8
1747
405
0.88
15
0.7
0.20
1.5
1.2
47
2.5
4.92
1.41
6.92
12.8
1.39
4.83
0.84
0.475
0.63
0.08
0.42
0.08
0.24
0.036
0.26
0.041
0.02
-0.5
1
0311-1011
GL
645375
6614016
73.09
0.103
13.74
1.28
0.025
0.25
1.09
3.35
5.61
0.05
0.17
98.74
10
5
2
1.8
8
4
41
47
-0.1
0.4
-0.1
-1
-0.5
-2
0.004
-0.5
-3
0.3
0.3
-5
-2
233
7.3
909
259
1.92
14
0.8
0.57
5.1
3.1
108
8.1
61.2
4.92
33.0
74.0
6.59
20.6
3.11
0.517
1.78
0.25
1.30
0.25
0.80
0.124
0.86
0.140
0.02
-0.5
2
19
0311-1060
GL
637108
6649929
75.07
0.040
13.82
0.64
0.013
0.10
1.14
4.33
4.02
0.02
0.40
99.59
11
3
-1
0.7
10
4
37
34
-0.1
0.5
-0.1
-1
-0.5
-2
0.002
-0.5
-3
0.3
-0.3
-5
-2
174
3.1
675
180
1.20
15
0.7
0.28
2.0
2.0
64
3.9
11.5
1.78
11.1
21.2
2.00
6.57
1.09
0.429
0.67
0.10
0.55
0.10
0.32
0.044
0.31
0.051
0.02
-0.5
2
0111-10
G
567103
6646207
74.45
0.134
13.99
1.49
0.024
0.34
0.90
3.74
4.72
0.10
0.34
100.24
36
-20
1
4
11
-10
16
38
-0.1
n/a
-0.1
4
0.6
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
261
6.7
609
104
1.42
23
1.0
3.25
16.2
3.9
125
35.3
19.0
5.76
32.8
71.6
7.58
27.5
6.28
0.564
5.14
1.00
6.20
1.22
3.36
0.569
3.36
0.506
n/a
n/a
4
0111-10/R
G
567103
6646207
73.75
0.133
13.81
1.45
0.024
0.36
0.89
3.72
5.06
0.10
0.34
99.64
-20
-20
1
4
11
-10
19
39
-0.1
n/a
-0.1
8
-0.5
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
255
6.6
594
104
1.54
22
1.1
3.40
16.2
3.6
122
34.7
18.2
5.35
30.7
66.4
7.14
26.4
5.86
0.522
5.07
0.97
5.89
1.20
3.25
0.552
3.22
0.477
n/a
n/a
4
0111-55
G
569026
6643933
74.78
0.065
13.80
1.27
0.011
0.12
0.80
3.35
5.55
0.04
0.44
100.23
-20
-20
-1
5
9
32
26
41
-0.1
n/a
-0.1
2
-0.5
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
243
3.0
606
105
1.47
23
1.1
2.48
9.4
2.8
83
19.8
16.0
2.16
36.8
71.3
7.17
24.3
4.44
0.531
3.13
0.58
3.29
0.64
1.67
0.266
1.52
0.218
n/a
n/a
2
0111-116
GL
582684
6635082
73.09
0.224
14.28
1.81
0.019
0.55
1.63
4.13
4.19
0.08
0.45
100.45
27
-20
3
2
22
-10
23
45
0.1
n/a
-0.1
-1
0.8
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
160
5.7
1,150
417
0.94
21
1.2
1.38
7.7
3.7
149
3.2
19.3
3.43
49.0
76.2
6.58
20.0
2.26
0.657
0.74
0.14
0.59
0.10
0.30
0.034
0.25
0.038
n/a
n/a
2
0111-4016
G
562555
6641898
73.45
0.126
14.31
1.58
0.050
0.28
0.74
3.74
5.23
0.07
0.57
100.14
-20
-20
1
2
10
-10
20
72
0.2
n/a
-0.1
5
0.6
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
345
11.7
597
94
2.14
27
1.4
4.91
24.5
3.7
130
21.1
18.3
6.64
53.1
102
10.1
34.0
5.63
0.559
3.16
0.59
3.24
0.64
1.76
0.317
2.06
0.295
n/a
n/a
4
0111-2144B
GL
557437
6633742
72.03
0.188
14.63
1.50
0.014
0.47
1.44
3.42
5.10
0.08
0.57
99.45
-20
-20
2
3
15
-10
25
34
-0.1
n/a
-0.1
3
-0.5
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
163
2.5
1,240
410
0.88
21
0.9
2.12
5.8
5.0
202
10.3
18.9
1.77
40.8
76.5
7.18
25.2
4.10
1.18
2.46
0.40
2.03
0.35
0.88
0.103
0.62
0.087
n/a
n/a
3
0111-2192A 0111-2192AR
GL
GL
574450
574450
6624980
6624980
74.07
73.92
0.152
0.166
14.24
14.10
1.61
1.60
0.019
0.019
0.51
0.50
2.39
2.35
4.22
4.29
2.51
2.61
0.06
0.06
0.42
0.46
100.20
100.07
-20
-20
-20
-20
3
3
3
2
21
16
-10
11
21
16
-30
35
-0.1
-0.1
n/a
n/a
-0.1
-0.1
5
1
-0.5
-0.5
-2
-2
n/a
n/a
-5
-5
n/a
n/a
-0.2
-0.2
-0.5
-0.5
n/a
n/a
n/a
n/a
118
124
3.3
3.4
775
770
432
420
0.71
0.60
23
23
1.1
0.9
1.56
0.91
4.8
7.4
2.6
2.2
90
88
4.3
4.2
13.2
12.2
2.54
3.05
22.9
16.5
42.2
31.1
3.92
3.29
12.8
11.0
1.81
1.53
0.684
0.600
0.95
0.82
0.15
0.14
0.77
0.72
0.14
0.14
0.39
0.39
0.059
0.051
0.39
0.34
0.059
0.057
n/a
n/a
n/a
n/a
4
3
0211-1060
GL
663073
6632357
72.79
0.262
13.93
1.88
0.026
0.55
1.19
4.13
4.20
0.07
0.59
99.63
40
-20
6
3
22
14
22
46
0.1
n/a
-0.1
2
-0.5
-2
n/a
-0.5
-3
-0.1
-0.5
-5
-2
214
2.3
814
194
1.10
22
1.1
2.44
17.8
5.1
223
19.4
24.1
3.68
60.9
112
10.3
33.3
5.24
0.739
3.40
0.54
2.98
0.60
1.92
0.288
1.80
0.258
n/a
-0.5
3
0211-1071 0211-1071 /R
GL
GL
665866
665866
6636747
6636747
73.22
72.84
0.186
0.180
14.48
14.37
1.36
1.43
0.019
0.019
0.31
0.31
1.27
1.25
4.89
4.85
3.99
3.87
0.07
0.06
0.34
0.34
100.14
99.52
24
n/a
-20
-20
2
n/a
1.3
n/a
15
15
-10
17
23
19
53
56
0.2
0.2
n/a
n/a
-0.1
-0.1
-1
2
-0.5
-0.5
-2
-2
n/a
n/a
1.2
-5
-3
n/a
-0.1
-0.5
-0.5
-5
n/a
-2
n/a
164
153
6.0
5.5
776
723
326
316
0.89
0.77
22
21
0.9
0.8
0.86
0.77
9.6
8.6
3.3
3.2
138
135
7.2
6.7
16.8
15.7
2.83
2.66
21.1
19.7
40.9
38.3
3.84
3.58
12.9
12.0
2.34
2.16
0.560
0.516
1.56
1.47
0.22
0.21
1.14
1.06
0.22
0.20
0.64
0.60
0.092
0.083
0.57
0.53
0.084
0.076
n/a
n/a
-0.5
n/a
2
2
0311-1068
G, py
651710
6635700
65.63
0.316
14.27
5.56
0.051
1.42
2.13
3.86
2.61
0.12
2.83
98.78
15
17
13
4
42
22
25
69
2.2
0.7
-0.1
-1
1.8
-2
2.498
1.5
-3
0.5
0.7
-5
-2
103
15.5
940
566
1.34
16
0.6
0.21
3.2
3.5
145
4.3
6.12
16.8
10.5
21.0
2.42
8.68
1.58
0.524
1.16
0.15
0.81
0.14
0.44
0.064
0.44
0.075
0.05
-0.5
2
Summary of Investigations 2004, Volume 2
Appendix 3 – Geochemistry of Ennadai Group Volcanic and Sedimentary Rocks
UTM Coordinates are for Zone 13 and Based on NAD 83.
Note: EVM, Ennadai mafic volcanic regional samples; EVM Bono, mafic volcanic samples from Bonokoski Lake; EVM min, weakly pyrite, pyrrhotite, ±chalcopyrite-bearing Ennadai mafic volcanic rocks, EVMminQV, with pyritic quartz veins; EVFr, Ennadai felsic
(rhyolite) volcanic; ESIFo,s,k, Ennadai iron formation, oxide, sulphide, silicate facies; and n/a, not analysed; negative values are below detection limit for those elements.
SAMPLE
Rock Name
UTM E
UTM N
SiO2
TiO2
Al2O3
Fe2O3
MnO
MgO
CaO
Na2O
K2O
P2O5
LOI
TOTAL
Cr
Ni
Co
Sc
V
Cu
Pb
Zn
Bi
Cd
In
Sn
W
Mo
S
As
Se
Sb
Ag
Ir
Au
Hg
Rb
Cs
Ba
Sr
Tl
Ga
Ge
Ta
Nb
Hf
Zr
Y
Th
U
La
Ce
Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Br
Be
%
%
%
%
%
%
%
%
%
%
%
%
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
%
ppm
ppm
ppm
ppm
ppb
ppb
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
0211-1096
EVM
625070
6618557
49.45
0.829
14.61
12.34
0.187
7.95
9.32
2.83
0.95
0.53
1.35
100.36
343
163
47
42.8
304
78
-5
114
0.1
n/a
-0.1
-1
-0.5
-2
n/a
2.5
-3
-0.1
-0.5
-5
-2
n/a
14
0.6
135
138
0.12
20
1.6
0.23
4.7
1.5
54
23.0
0.41
0.15
9.29
22.8
2.70
11.6
3.21
0.972
3.65
0.67
3.87
0.84
2.53
0.367
2.20
0.321
-0.5
-1
0111-1018
EVM
595918
6646635
49.46
0.725
14.60
11.40
0.199
7.73
10.89
2.12
0.70
0.06
1.68
99.57
218
141
46
33
229
122
9
85
-0.1
n/a
-0.1
-1
-0.5
-2
n/a
5.7
-3
-0.2
0.6
-5
-2
n/a
20
1.2
175
171
0.06
15
1.3
0.11
2.1
1.2
40
16.8
0.29
0.05
2.38
6.43
0.93
5.08
1.70
0.710
2.20
0.42
2.84
0.60
1.82
0.270
1.89
0.273
-0.5
-1
Saskatchewan Geological Survey
0111-1019
EVM
596181
6645175
48.52
0.606
15.56
11.61
0.195
9.52
10.18
2.27
0.57
0.05
1.25
100.32
260
161
56
36.2
218
118
-5
73
0.2
n/a
-0.1
1
-0.5
-2
n/a
1.8
-3
-0.2
-0.5
-5
9
n/a
13
1.8
555
147
0.06
14
1.4
0.09
1.8
1.0
34
13.7
0.25
0.05
1.79
5.08
0.79
4.23
1.35
0.581
1.86
0.35
2.38
0.52
1.51
0.232
1.47
0.219
-0.5
-1
0111-4030
EVM
577801
6647678
48.84
0.972
15.96
12.38
0.234
6.99
10.46
2.89
0.43
0.09
1.03
100.27
334
102
48
42
272
75
6
127
-0.1
n/a
-0.1
2
0.7
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
n/a
8
1.0
85
248
0.08
20
1.4
1.42
4.4
2.1
75
26.0
0.79
0.18
5.56
14.1
1.96
9.86
3.00
1.06
3.77
0.71
4.60
1.00
2.67
0.432
2.69
0.405
n/a
-1
0411-0002
EVM
580783
6648743
51.38
1.407
14.08
11.95
0.259
4.82
10.81
3.81
0.76
0.14
0.57
99.99
12
113
57
22.9
291
67
-3
111
2.8
1.2
-0.1
12
0.6
-1
0.017
4.3
-3
-0.1
-0.3
-5
-2
-1
20
1.1
203
293
0.23
18
1.9
0.47
8.3
3.1
109
24.3
0.94
0.36
8.32
21.4
3.07
15.2
4.35
1.63
4.88
0.92
5.25
0.99
3.03
0.473
2.79
0.388
-0.5
2
0411-0003
EVM
580783
6648743
51.43
0.979
8.62
11.95
0.223
11.63
11.68
1.84
0.40
0.07
1.10
99.93
678
235
66
36.7
244
18
-3
107
1.3
2.3
-0.1
10
1.5
-1
0.007
1.2
-3
-0.1
-0.3
-5
-2
-1
8
0.6
204
140
0.08
12
2.0
0.20
3.8
2.0
66
14.3
0.36
0.10
3.54
9.76
1.46
7.50
2.44
0.892
2.84
0.56
3.19
0.60
1.80
0.270
1.69
0.230
-0.5
-1
0311-1046
EVM
642957
6638760
48.42
1.191
12.62
16.51
0.249
6.52
9.71
2.79
0.62
0.09
1.02
99.74
38
49
48
53
394
47
7
115
0.2
1.6
-0.1
-1
-0.5
-2
0.044
1.6
-3
-0.1
-0.3
-5
-2
n/a
8
0.6
54
114
0.11
16
1.8
0.13
2.6
1.4
53
24.4
0.24
0.49
4.87
11.8
1.77
8.54
2.53
1.00
3.32
0.65
3.95
0.84
2.74
0.408
2.53
0.401
-0.5
1
0311-5006
EVM
598231
6569826
47.56
0.987
14.71
14.08
0.198
7.19
10.83
2.93
0.72
0.08
0.74
100.02
237
130
49
42.1
287
112
7
93
0.2
1.5
-0.1
-1
-0.5
-2
0.049
1
-3
-0.1
-0.3
-5
-2
n/a
12
0.3
54
147
0.07
15
1.4
0.09
2.0
1.7
70
21.9
0.37
0.15
3.78
8.75
1.36
6.76
2.11
0.818
2.92
0.57
3.48
0.75
2.45
0.359
2.22
0.356
-0.6
-1
0111-2162
EVM Bono
589324
6616543
56.62
1.063
14.05
11.52
0.161
3.93
6.87
3.48
0.68
0.12
0.94
99.44
75
44
33
27
267
111
-5
107
0.3
n/a
-0.1
4
0.6
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
n/a
15
0.9
106
225
0.10
25
1.8
1.53
4.2
2.7
109
20.3
1.44
0.36
9.88
21.4
2.58
11.4
3.12
1.11
3.28
0.57
3.52
0.71
1.99
0.291
1.76
0.266
n/a
-1
0111-2172
EVM Bono
591398
6624682
42.73
1.325
14.74
19.45
0.243
8.32
9.76
2.23
0.26
0.09
0.90
100.05
194
99
59
48
353
127
-5
142
-0.1
n/a
11.6
27
-0.5
-2
n/a
-5
n/a
7.4
-0.5
n/a
n/a
n/a
5
0.2
30
54
-0.05
22
1.7
1.42
6.1
3.0
108
32.2
0.95
0.26
8.48
21.4
2.87
14.0
4.30
1.42
5.03
0.92
5.95
1.32
3.59
0.579
3.49
0.515
n/a
-1
0111-1004
EVM Bono
591353
6625539
50.28
1.282
13.51
15.61
0.215
6.07
10.65
1.33
0.14
0.13
1.04
100.26
165
69
51
38.4
299
200
-5
107
0.2
n/a
-0.1
-1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
4
n/a
5
0.3
24
122
-0.05
18
1.5
0.38
5.2
2.7
89
30.5
1.58
0.21
6.63
17.6
2.36
11.7
3.40
1.23
3.91
0.79
5.26
1.13
3.21
0.523
3.22
0.483
-0.5
-1
0111-1006
EVM Bono
591541
6625299
48.93
1.215
13.76
15.51
0.216
6.97
9.72
2.03
0.86
0.12
0.88
100.20
177
85
52
37.9
302
186
-5
120
-0.1
n/a
-0.1
-1
0.6
-2
n/a
1.1
4
-0.2
-0.5
-5
-2
n/a
48
1.5
97
111
0.12
17
1.7
0.30
3.8
1.9
60
25.9
1.10
0.15
6.20
14.8
2.02
10.0
3.00
1.11
3.62
0.65
4.43
0.94
2.79
0.404
2.76
0.403
-0.5
-1
0111-1007
EVM Bono
591486
6625279
48.46
1.595
13.08
17.14
0.246
6.13
9.99
2.11
0.28
0.13
0.67
99.84
123
84
51
43.1
379
159
-5
128
-0.1
n/a
-0.1
1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
-2
n/a
7
0.5
32
80
-0.05
20
1.8
0.28
4.0
2.4
74
32.6
0.72
0.10
5.57
14.6
2.13
11.5
3.55
1.41
4.58
0.82
5.60
1.17
3.38
0.520
3.41
0.485
-0.5
1
0111-1011
EVM Bono
591266
6624389
50.92
1.893
12.94
18.72
0.220
4.41
7.56
2.54
0.31
0.20
0.34
100.05
42
26
45
40.4
289
102
-5
156
0.1
n/a
-0.1
1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
7
n/a
5
0.3
35
71
-0.05
21
1.7
0.46
5.9
3.6
115
46.5
1.08
0.20
8.81
22.6
3.21
16.3
5.04
1.90
6.47
1.15
7.99
1.71
5.11
0.813
5.20
0.747
-0.5
1
20
0111-1013
EVM Bono
591236
6623676
48.13
1.114
14.50
14.61
0.261
5.02
12.12
2.77
0.32
0.11
0.96
99.91
76
67
53
42.7
310
199
-5
121
-0.1
n/a
-0.1
-1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
3
n/a
6
0.6
48
161
0.05
19
1.3
0.24
3.7
1.7
61
24.4
0.62
0.11
6.25
14.9
2.01
9.78
2.80
1.13
3.38
0.62
4.17
0.93
2.65
0.401
2.76
0.392
-0.5
-1
0111-1014
EVM Bono
591309
6623665
48.81
0.889
13.76
14.44
0.203
7.80
10.45
2.06
0.11
0.06
0.69
99.27
139
112
58
40.9
302
153
-5
97
-0.1
n/a
-0.1
-1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
14
n/a
3
0.3
19
107
-0.05
17
1.6
0.13
2.6
1.3
47
18.3
0.37
0.06
2.65
7.08
1.05
5.51
1.87
0.813
2.45
0.46
3.26
0.67
2.00
0.296
2.04
0.301
-0.5
-1
0111-1017
EVM Bono
591210
6623570
44.33
0.952
15.69
13.64
0.197
9.13
11.90
2.17
0.35
0.06
0.52
98.93
276
171
58
31.6
259
17
-5
62
-0.1
n/a
-0.1
-1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
5
n/a
5
0.2
86
151
-0.05
18
1.3
0.15
2.7
1.2
40
15.8
0.39
0.06
3.73
9.42
1.39
7.26
2.26
1.08
2.71
0.46
3.02
0.61
1.60
0.226
1.44
0.219
-0.5
-1
0111-286
EVFr
600650
6648375
64.95
0.362
17.79
3.25
0.032
1.52
4.41
5.17
1.43
0.17
1.12
100.19
28
29
9
4.6
39
-10
9
47
0.2
n/a
-0.1
-1
-0.5
-2
n/a
0.9
-3
-0.2
-0.5
-5
-2
n/a
32
1.1
458
486
0.12
19
0.9
0.32
4.3
2.8
98
5.5
4.04
0.81
23.6
50.9
5.60
21.6
3.08
0.885
1.87
0.22
1.04
0.18
0.52
0.071
0.48
0.073
1.8
1
0111-1020
EVFr
597726
6648870
64.23
0.626
16.96
5.14
0.075
1.31
4.86
3.35
1.90
0.30
0.72
99.47
-5
-20
9
10.3
20
21
8
98
-0.1
n/a
-0.1
2
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
3
n/a
50
1.7
295
272
0.16
23
1.1
0.87
8.6
6.0
225
33.9
3.16
0.72
25.5
55.0
6.34
27.0
5.80
1.79
5.99
0.95
5.98
1.20
3.46
0.499
3.45
0.495
-0.5
1
0111-107
EVFr
578700
6637750
70.80
0.227
15.64
1.95
0.028
0.84
2.66
5.41
0.83
0.08
1.10
99.57
29
-20
5
5
31
27
-5
-30
-0.1
n/a
-0.1
-1
-0.5
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
n/a
28
3.2
552
127
0.11
23
0.7
1.53
3.1
3.0
119
4.0
3.31
1.19
16.2
28.6
2.82
10.6
1.90
0.570
1.27
0.18
0.81
0.14
0.34
0.045
0.32
0.045
n/a
2
0411-0005
EVFr
586682
6643387
70.01
0.422
14.51
4.53
0.040
1.30
3.16
4.54
1.08
0.12
0.40
100.11
6
13
7
5.6
41
4
-3
24
0.2
-0.3
-0.1
9
-0.5
-1
0.004
-0.5
-3
-0.1
0.4
-5
-2
-1
43
1.9
555
194
0.33
16
1.1
0.79
7.2
4.9
169
16.6
3.97
0.94
21.7
42.2
4.38
16.3
3.29
0.934
3.16
0.57
3.17
0.62
1.91
0.313
1.99
0.299
-0.5
2
0311-1140
ESIF
564633
6565687
83.35
0.019
0.82
7.77
0.372
2.52
2.76
0.25
-0.01
0.03
0.70
98.58
22
12
5
0.8
9
189
4
77
0.2
-0.3
-0.1
-1
-0.5
-2
0.772
2
-3
0.1
0.6
-5
-2
n/a
-1
0.1
12
8
-0.05
1
1.5
0.04
0.8
0.5
12
4.9
0.47
0.21
3.18
5.36
0.64
2.43
0.50
0.360
0.51
0.08
0.56
0.13
0.41
0.061
0.41
0.070
-0.5
1
0311-1144
ESIF
605569
6581689
45.99
2.117
11.75
20.89
0.261
6.02
9.98
2.18
0.32
0.13
-0.01
98.59
36
44
54
53.4
570
198
5
100
0.9
1.2
-0.1
-1
-0.5
-2
0.265
2.8
-3
-0.1
-0.3
-5
2
n/a
10
0.8
67
98
0.18
19
1.5
0.27
4.6
1.8
62
31.0
0.35
0.62
3.05
8.12
1.35
7.39
2.79
1.10
4.21
0.85
5.19
1.09
3.52
0.520
3.18
0.496
-0.5
1
0311-2056
ESIF
653429
6629553
30.48
0.368
8.29
39.79
0.109
1.54
0.93
0.53
2.12
0.03
14.91
99.10
85
381
123
10.4
90
500
36
89
0.4
3.1
-0.1
-1
0.9
6
16.132
8.1
-3
1.6
2.0
-5
6
n/a
68
3.4
194
32
0.37
10
1.4
0.25
3.4
2.1
88
11.0
2.80
0.78
12.7
24.3
2.64
10.2
2.12
0.690
2.05
0.32
1.83
0.38
1.15
0.182
1.17
0.188
-0.5
1
0311-3040
ESIF
601455
6559138
72.04
0.005
0.14
20.42
0.158
2.72
2.45
0.17
0.02
0.06
0.37
98.54
20
8
5
0.7
7
300
8
58
0.3
1.5
-0.1
-1
-0.5
-2
0.756
2.2
-3
-0.1
0.5
-5
-2
n/a
-1
0.3
2
13
-0.05
1
2.6
-0.01
0.6
0.1
3
5.9
0.12
0.38
2.62
4.98
0.61
2.58
0.57
0.428
0.70
0.11
0.73
0.16
0.53
0.081
0.54
0.091
-0.5
2
0111-333
ESIF
591541
6625299
50.87
0.082
1.28
44.74
0.050
1.27
2.51
0.12
-0.01
0.14
-0.66
100.36
22
-20
4
2.3
23
27
-5
48
0.2
n/a
-0.1
-1
-0.5
-2
n/a
0.5
-3
-0.2
-0.5
-5
-2
n/a
3
0.3
15
9
-0.05
3
4.9
0.02
0.9
0.2
11
6.7
0.32
0.03
2.80
5.21
0.58
2.50
0.61
0.535
0.71
0.13
0.89
0.19
0.58
0.083
0.53
0.089
-0.5
-1
0111-338
ESIF
591421
6624804
47.28
0.017
0.45
50.34
0.032
1.25
2.01
0.06
-0.01
0.13
-1.37
100.16
15
-20
3
1
7
60
-5
33
0.8
n/a
-0.1
-1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
-2
n/a
3
0.1
16
13
0.06
1
5.5
0.01
0.8
-0.1
4
5.5
0.22
0.05
2.60
4.43
0.49
2.22
0.49
0.532
0.56
0.10
0.59
0.13
0.41
0.064
0.43
0.065
-0.5
-1
Summary of Investigations 2004, Volume 2
0111-CAMP 0111-CAMPR
ESIF
ESIF
590425
590425
6626535
6626535
36.59
36.52
0.016
0.013
0.47
0.45
46.74
46.70
1.400
1.412
4.37
4.39
2.89
2.88
0.09
0.09
-0.01
0.03
0.03
0.03
7.52
7.48
100.10
100.00
12
12
25
23
27
27
0.9
0.9
6
6
229
272
-5
-5
179
207
0.3
0.2
n/a
n/a
-0.1
-0.1
-1
-1
4.5
1.3
-2
-2
n/a
n/a
1
0.8
-3
-3
-0.2
-0.2
-0.5
-0.5
-5
-5
3
5
n/a
n/a
2
2
0.3
0.3
20
21
10
10
-0.05
-0.05
2
2
0.9
1.2
-0.01
-0.01
0.9
0.8
0.2
0.1
12
11
8.4
8.7
0.29
0.29
3.71
3.89
2.07
2.20
3.61
3.86
0.44
0.44
1.93
2.09
0.45
0.47
0.567
0.601
0.55
0.57
0.11
0.11
0.72
0.74
0.17
0.19
0.56
0.60
0.083
0.095
0.51
0.60
0.084
0.088
-0.5
-0.5
-1
-1
0111-0043
EVM min
567693
6637769
45.88
0.777
18.76
9.77
0.289
3.65
15.94
1.27
0.82
0.13
1.69
98.99
95
124
30
28.6
136
98
8
64
22.3
1.9
-0.1
9
1.1
-1
0.278
4.4
-3
-0.1
-0.3
-5
9
-1
16
2.0
251
263
0.19
20
1.3
0.38
5.4
3.3
120
20.1
1.38
0.41
15.0
32.1
3.79
15.3
3.58
1.34
3.75
0.68
3.74
0.76
2.42
0.383
2.56
0.379
-0.5
1
0211-1124
EVM min
624440
6648903
47.97
0.987
13.80
16.19
0.357
5.84
10.38
1.41
1.12
0.09
1.47
99.61
69
55
50
39.2
284
347
11
144
0.4
-0.3
-0.1
1
0.7
-2
0.484
-0.5
-3
0.3
0.5
-5
4
n/a
47
10.0
213
114
0.41
18
2.1
0.16
3.9
1.8
60
23.0
0.52
0.12
5.25
11.6
1.68
7.99
2.39
0.886
2.97
0.62
3.60
0.79
2.33
0.366
2.27
0.366
-0.5
-1
Saskatchewan Geological Survey
0211-1127
EVM min
618769
6624181
56.70
0.607
12.23
11.28
0.134
4.63
9.69
1.69
0.63
0.06
2.76
100.40
34
31
31
26.6
196
370
9
96
1.9
0.6
0.2
54
2.3
3
1.626
-0.5
-3
-0.1
0.9
-5
-2
n/a
23
2.5
52
190
0.20
22
2.4
1.12
9.7
1.0
29
21.6
1.18
0.77
5.31
13.1
1.95
9.04
2.67
0.734
2.97
0.60
3.39
0.71
2.05
0.313
1.93
0.287
1.1
1
0111-356
EVM min
597105
6619995
64.51
0.188
18.54
3.07
0.031
1.16
4.61
4.78
1.57
0.11
1.60
100.18
19
39
15
5.2
38
120
8
-30
0.4
n/a
-0.1
-1
0.5
92
n/a
0.7
-3
-0.2
-0.5
-5
-2
n/a
59
2.6
263
337
0.22
17
1.4
0.14
1.6
3.3
122
8.9
3.20
1.21
14.2
31.1
3.53
14.4
2.80
0.840
2.22
0.34
1.73
0.32
0.84
0.116
0.68
0.103
2
3
0111-4187
EVM min
607810
6641128
71.72
0.370
12.57
4.01
0.058
2.15
4.34
3.63
0.56
0.09
0.53
100.01
54
37
12
7.9
67
40
12
31
0.6
n/a
-0.1
-1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
-2
n/a
25
13.0
157
318
0.22
14
1.2
0.13
2.5
2.1
77
5.5
1.16
0.45
4.30
9.62
1.21
5.42
1.31
0.536
1.24
0.19
1.05
0.19
0.53
0.078
0.50
0.076
-0.5
-1
0311-3028
EVM min
651221
6625676
56.00
1.235
17.66
5.71
0.059
3.98
1.36
0.55
7.59
0.09
4.37
98.59
108
24
11
28.9
214
241
37
34
0.4
1.1
-0.1
1
66.9
-2
1.156
11.5
-3
1.1
0.8
-5
68
n/a
180
12.7
1110
92
0.98
24
2.3
0.78
7.7
4.9
192
43.7
16.2
2.77
47.3
93.8
11.1
42.1
7.65
2.08
7.20
1.17
7.04
1.45
4.46
0.584
3.41
0.533
-0.5
3
0111-341
EVM min
595406
6625292
54.38
0.505
8.42
20.32
0.339
5.79
7.29
0.65
0.19
0.07
2.14
100.10
165
20
29
21.4
137
398
-5
91
0.5
n/a
-0.1
-1
-0.5
-2
n/a
1.1
-3
-0.2
-0.5
-5
9
n/a
5
0.4
47
37
0.05
11
2.6
0.15
2.4
1.0
34
14.5
1.33
0.08
3.91
9.98
1.23
5.92
1.73
1.06
2.02
0.37
2.39
0.50
1.38
0.216
1.35
0.216
-0.5
-1
0111-343
EVM min
595406
6625292
60.78
0.339
7.02
15.92
0.156
4.65
7.46
0.50
0.51
0.12
2.40
99.86
94
-20
29
13.1
104
518
-5
88
0.3
n/a
-0.1
-1
-0.5
-2
n/a
0.7
4
-0.2
-0.5
-5
6
n/a
13
0.7
85
37
0.07
10
1.9
0.08
1.8
1.1
44
15.0
0.52
0.09
4.52
10.3
1.27
5.74
1.54
0.947
1.88
0.36
2.24
0.49
1.47
0.228
1.38
0.219
-0.5
-1
0111-297
EVM min
596690
6641957
54.35
2.061
12.52
15.04
0.300
3.76
6.66
2.91
0.66
0.17
1.88
100.32
8
-20
28
44
399
48
6
232
0.7
n/a
0.1
1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
-2
n/a
12
1.1
166
118
0.10
23
1.6
0.40
5.8
4.2
138
43.1
1.61
0.22
6.43
16.9
2.28
11.5
3.62
1.37
4.93
1.07
7.39
1.66
4.85
0.802
5.01
0.754
-0.5
1
0111-329
EVMminQV
591413
6625608
60.34
0.760
10.63
11.20
0.214
2.87
9.96
1.99
0.43
0.08
1.39
99.87
70
40
26
24
188
248
6
74
0.6
n/a
-0.1
-1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
-2
n/a
12
0.6
75
111
-0.05
14
1.3
0.19
3.0
1.8
66
18.4
0.91
0.21
5.18
11.9
1.50
7.40
2.04
0.786
2.46
0.48
3.10
0.67
1.98
0.316
2.00
0.293
1.5
-1
0111-330
EVMminQV
591413
6625608
83.07
0.369
3.98
5.95
0.079
1.62
3.76
0.64
0.10
0.04
0.56
100.18
35
63
19
12.5
88
114
-5
44
0.3
n/a
-0.1
-1
-0.5
-2
n/a
0.9
-3
-0.2
-0.5
-5
-2
n/a
4
0.1
45
16
0.14
6
0.9
0.08
1.8
0.7
27
8.0
0.33
0.05
1.86
4.66
0.63
3.20
0.91
0.382
1.09
0.22
1.46
0.29
0.88
0.138
0.87
0.142
-0.5
-1
0111-336
EVMminQV
591317
6625257
41.94
0.580
15.83
14.03
0.223
3.77
18.14
0.60
1.11
0.15
2.90
99.27
153
38
54
43.6
231
619
13
69
3.5
n/a
-0.1
1
1.2
2
n/a
-0.5
-3
-0.2
-0.5
-5
-2
n/a
61
5.8
430
296
0.24
21
1.7
0.03
1.1
1.3
42
41.3
0.34
0.16
4.09
10.3
1.50
8.02
2.84
1.04
4.35
0.93
6.32
1.46
4.20
0.621
3.78
0.591
1.5
-1
0111-4188
EVMminQV
607810
6641128
65.41
0.106
16.43
4.37
0.031
0.74
4.34
5.16
0.99
0.02
2.45
100.06
21
-20
12
2.3
30
11
12
-30
1.7
n/a
-0.1
-1
80.3
-2
n/a
-0.5
-3
-0.2
-0.5
-5
3
n/a
32
15.3
179
585
0.29
19
1.5
0.06
2.3
0.3
16
3.6
0.53
1.50
9.83
22.6
2.64
10.5
1.57
0.633
1.09
0.13
0.63
0.11
0.26
0.032
0.20
0.029
-0.5
2
21
0111-4188R
EVMminQV
607810
6641128
65.17
0.106
16.54
4.40
0.031
0.74
4.36
5.20
0.98
0.02
2.40
99.94
16
-20
12
2.4
29
10
10
-30
1.2
n/a
-0.1
-1
85.6
-2
n/a
-0.5
-3
-0.2
-0.5
-5
-2
n/a
31
14.8
178
586
0.27
18
1.4
0.07
2.2
0.3
14
3.6
0.43
1.54
10.1
23.1
2.69
10.4
1.66
0.655
1.15
0.15
0.65
0.11
0.27
0.036
0.20
0.032
-0.5
2
0311-1020
EVMminQV
637457
6607205
57.63
0.895
11.35
10.08
0.166
6.49
10.65
1.33
0.38
0.13
0.96
100.06
101
80
40
34
212
108
8
191
0.2
1.3
-0.1
-1
0.8
6
0.410
1.2
-3
0.3
-0.3
-5
-2
n/a
15
1.4
79
121
0.27
13
1.5
0.14
2.4
1.5
58
17.4
0.65
0.18
4.75
10.5
1.48
6.98
2.03
0.862
2.48
0.53
2.86
0.60
1.93
0.275
1.72
0.290
-0.5
-1
Summary of Investigations 2004, Volume 2
Appendix 4 – Geochemistry of Hurwitz Group Rocks
UTM Coordinates are for Zone 13 and Based on NAD 83.
Note: HAp, Ameto Formation pelite; HApf,o,s, ferruginous pelite, oxide facies, sulphide facies; HWcs, Watterson Formation, calc-silicate rocks; HWm,qv, marble, with quartz veining; Wp, Wollaston Supergroup pelite; n/a, not analysed; negative values are below
detection limits.
SAMPLE
Rock Name
UTM E
UTM N
SiO2
TiO2
Al2O3
Fe2O3
MnO
MgO
CaO
Na2O
K2O
P2O5
LOI
TOTAL
Cr
Ni
Co
Sc
V
Cu
Pb
Zn
Bi
Cd
In
Sn
W
Mo
S
As
Se
Sb
Ag
Ir
Au
Hg
Rb
Cs
Ba
Sr
Tl
Ga
Ge
Ta
Nb
Hf
Zr
Y
Th
U
La
Ce
Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Br
Be
%
%
%
%
%
%
%
%
%
%
%
%
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
%
ppm
ppm
ppm
ppm
ppb
ppb
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
0211-6002
HAp
662746
6630138
59.88
0.677
16.60
7.10
0.082
3.01
2.50
2.86
5.21
0.16
1.06
99.15
72
45
15
14.1
88
34
13
61
7.1
0.6
-0.1
13
3.1
-1
0.027
4.0
-3
0.2
0.4
-5
-2
-1
222
10.6
686
106
2.53
21
2.5
1.38
15.4
5.2
174
24.6
17.3
3.06
54.9
108
12.0
43.8
7.76
1.38
6.15
0.95
5.02
0.89
2.80
0.431
2.68
0.378
-0.5
3
0211-6004
HDpc
660820
6623307
52.82
0.640
15.62
7.78
0.122
8.65
6.62
0.59
3.89
0.11
3.23
100.08
96
54
24
14.8
94
8
4
47
20.3
1.0
-0.1
12
1.5
8
0.004
2.6
-3
1.1
-0.3
-5
-2
-1
184
5.9
3,002
88
1.53
21
2.1
1.24
13.6
3.9
128
28.5
16.7
4.83
57.0
116
12.7
47.0
8.90
1.56
6.96
1.13
5.88
1.05
3.20
0.497
3.10
0.432
-0.5
3
Saskatchewan Geological Survey
0311-1157
Wp
662833
6547641
60.63
0.895
17.39
8.22
0.061
3.20
1.38
2.21
3.19
0.20
1.65
99.02
89
50
19
16.7
113
10
15
70
4.4
0.3
-0.1
11
0.5
4
0.009
2.5
-3
-0.1
0.3
-5
6
-1
197
8.2
832
150
2.51
22
1.9
1.00
15.7
5.7
201
28.7
14.0
3.29
65.2
130
14.2
52.7
9.10
1.91
7.15
1.13
5.91
1.10
3.31
0.495
3.11
0.438
-0.5
2
0111-114
HAfps
580935
6636542
59.92
0.488
13.25
10.60
0.071
3.16
2.11
0.98
4.79
0.12
4.71
100.20
87
24
11
14
248
67
16
161
0.1
n/a
-0.1
3
10.8
5
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
n/a
240
11.9
1,120
218
1.08
21
2.2
2.71
13.3
4.0
148
24.0
17.4
6.59
39.3
67.0
7.97
28.8
5.08
0.976
3.74
0.61
3.84
0.81
2.30
0.384
2.51
0.391
n/a
3
0111-197
HAfps
566523
6628728
59.75
0.300
7.67
13.63
0.818
5.26
6.02
0.98
3.14
0.14
2.34
100.03
33
-20
10
7.7
38
47
8
80
0.6
n/a
-0.1
2
-0.5
-2
n/a
1.5
-3
-0.2
-0.5
-5
-2
n/a
136
1.2
1,480
53
0.60
12
4.0
0.64
7.8
3.8
132
25.0
6.90
0.67
23.3
51.8
6.05
24.1
4.70
0.842
3.92
0.65
3.79
0.80
2.35
0.369
2.13
0.312
-0.5
3
0111-220
HAfpo
566481
6626171
55.07
0.306
6.87
16.07
1.309
6.69
9.31
0.85
2.78
0.17
0.61
100.03
42
-20
12
7.7
44
-10
8
72
0.9
n/a
-0.1
3
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
-2
n/a
70
0.7
1,230
67
0.36
12
5.1
0.54
6.9
3.5
129
24.0
5.44
0.37
26.8
57.5
6.46
25.3
4.44
0.852
3.84
0.60
3.49
0.71
2.08
0.301
1.75
0.264
-0.5
3
0111-220 /R
HAfpo
566481
6626171
55.89
0.303
6.78
15.89
1.293
6.62
9.19
0.85
2.68
0.17
0.61
100.28
40
-20
13
8
44
41
7
73
0.9
n/a
-0.1
3
-0.5
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
n/a
69
0.7
1,220
67
0.35
13
5.0
0.55
6.9
3.7
129
23.7
5.65
0.38
27.3
58.3
6.55
25.2
4.54
0.845
3.81
0.61
3.49
0.74
2.09
0.307
1.80
0.266
n/a
3
0111-2186A
HAfps
582077
6636721
57.09
0.546
15.78
9.43
0.068
2.99
1.79
2.14
4.83
0.13
5.11
99.90
66
-20
4
16
243
28
20
125
-0.1
n/a
0.1
4
3.5
8
n/a
-5
n/a
0.6
-0.5
n/a
n/a
n/a
232
11.3
1,140
168
1.27
25
2.4
2.32
15.3
5.4
190
35.2
23.9
5.31
60.5
104
12.3
44.1
7.55
1.38
5.47
0.90
5.52
1.13
3.36
0.533
3.26
0.498
n/a
3
0111-2186B
HAfps
582077
6636721
58.81
0.216
6.72
24.94
1.149
4.31
2.99
0.15
0.33
0.57
-0.15
100.04
31
-20
19
8
48
15
-5
145
0.2
n/a
-0.1
2
0.7
-2
n/a
-5
n/a
0.3
-0.5
n/a
n/a
n/a
21
2.2
118
108
0.13
11
6.0
1.95
8.0
2.1
77
29.3
9.54
2.17
39.6
75.1
7.80
29.7
5.37
1.12
4.46
0.78
4.71
0.97
2.67
0.403
2.23
0.320
n/a
2
0211-1021
HAfpo
662678
6621118
60.15
0.689
16.95
7.10
0.044
3.29
3.06
2.19
3.95
0.14
1.41
98.95
117
50
15
18.3
111
-10
-5
59
0.2
n/a
-0.1
3
2.0
-2
n/a
1.5
-3
1.4
-0.5
-5
-2
n/a
191
6.6
1,330
79
0.89
25
1.8
1.33
14.8
3.3
130
22.7
17.5
4.07
54.2
111
11.1
38.5
6.39
1.21
5.05
0.74
3.99
0.80
2.46
0.351
2.15
0.307
-0.5
4
0211-1080
HAfps
662709
6630728
67.36
0.191
12.39
8.58
0.049
1.85
0.23
1.49
2.91
0.07
4.56
99.68
14
-20
21
2.4
22
31
7
34
0.5
n/a
-0.1
3
1.2
3
n/a
1.8
-3
-0.1
-0.5
-5
-2
n/a
148
3.9
605
54
0.53
22
1.1
1.28
14.1
4.2
175
12.5
22.7
5.20
43.8
85.2
7.47
24.0
3.72
0.663
2.23
0.35
1.94
0.38
1.20
0.179
1.14
0.171
-0.5
2
0211-1180
HAfps
667570
6617410
63.21
0.331
7.60
14.90
0.497
3.95
6.32
0.28
0.87
1.02
1.31
100.29
50
30
12
7.6
49
105
21
123
0.4
-0.3
-0.1
3
0.6
-2
0.311
1.7
-3
0.3
-0.3
-5
16
n/a
40
1.6
170
27
0.27
12
2.5
0.61
7.2
2.9
95
39.1
9.53
3.62
34.8
72.8
7.73
29.6
6.32
1.43
5.76
1.04
5.86
1.19
3.50
0.532
3.12
0.491
-0.5
2
0311-1146
HAfpo
598172
6569877
59.78
0.021
0.26
35.70
0.047
0.08
1.29
0.26
0.36
-0.01
0.89
98.67
21
3
2
0.4
12
5
14
16
0.3
1.9
-0.1
-1
3.4
-2
0.004
2.1
-3
0.8
0.4
-5
-2
n/a
21
1.1
20
2
-0.05
-1
3.2
-0.01
1.3
0.2
17
1.7
0.31
0.33
1.76
3.06
0.35
1.35
0.29
0.060
0.29
0.04
0.27
0.05
0.14
0.017
0.08
0.011
-0.5
-1
0111-259
HWcs
563855
6618665
56.72
0.176
4.86
1.53
0.067
13.93
18.61
0.64
2.96
0.28
0.45
100.21
13
-20
-1
2.9
26
-10
13
44
1.3
n/a
-0.1
1
-0.5
-2
n/a
1
-3
-0.2
-0.5
-5
-2
n/a
123
5.8
3,830
137
0.66
6
1.6
0.47
5.2
16.8
669
14.7
3.91
3.16
14.8
30.8
3.10
11.9
2.29
0.540
2.03
0.33
2.03
0.44
1.31
0.226
1.50
0.241
0.9
2
22
0111-275
HWcs
581491
6621836
51.05
0.701
17.67
8.06
0.052
3.11
8.62
0.83
6.81
0.12
3.16
100.17
91
39
17
19.4
122
40
36
99
0.7
n/a
-0.1
2
1.5
-2
n/a
0.5
-3
-0.2
-0.5
-5
-2
n/a
254
10.7
795
351
1.15
25
1.9
1.15
12.1
3.2
105
23.6
18.5
4.35
53.2
108
11.3
42.0
6.95
1.29
5.24
0.82
4.63
0.88
2.53
0.378
2.34
0.331
1.8
2
0211-1003
HWm
653688
6614454
30.54
0.036
1.06
1.77
0.072
15.70
22.36
-0.01
0.62
0.03
27.81
99.94
54
-20
3
0.8
9
100
6
117
-0.1
n/a
-0.1
-1
0.5
-2
n/a
3.1
-3
0.2
-0.5
-5
-2
n/a
13
0.3
140
29
0.05
2
0.7
0.07
2.7
0.5
20
14.2
1.17
0.26
5.13
10.5
1.14
4.75
1.02
0.248
1.12
0.18
1.08
0.27
0.82
0.106
0.51
0.066
1.1
-1
0211-1045
HWm
653598
6614313
17.59
0.538
3.27
2.27
0.081
17.97
25.20
0.03
1.55
0.12
30.77
99.38
80
28
4
5.3
34
22
-5
-30
-0.1
n/a
-0.1
1
1.2
-2
n/a
5.1
-3
1.2
-0.5
-5
-2
n/a
48
1.3
464
42
0.21
5
0.9
0.89
10.2
21.1
793
35.6
19.0
4.76
48.4
95.1
9.38
34.7
6.41
0.857
5.14
0.86
4.93
1.10
3.57
0.571
3.54
0.550
2
1
0211-1046
HWmqv
653598
6614313
79.78
0.012
0.22
0.90
0.017
5.47
6.53
-0.01
0.12
0.04
7.11
100.20
26
-20
1
0.3
-5
13
-5
-30
-0.1
n/a
-0.1
-1
-0.5
-2
n/a
2.8
-3
-0.1
-0.5
-5
-2
n/a
3
0.1
1,560
45
-0.05
-1
1.0
0.05
1.7
0.6
27
6.4
0.32
0.14
1.46
3.48
0.42
1.95
0.49
0.083
0.55
0.09
0.55
0.13
0.39
0.050
0.26
0.034
3.7
-1
0211-1050
HWmqv
653688
6614454
72.90
0.010
0.22
1.04
0.023
8.01
9.40
0.06
0.10
0.03
7.50
99.28
11
10
1
0.5
6
10
31
43
-0.1
-0.3
-0.1
-1
-0.5
-2
-0.001
2.1
-3
-0.1
-0.3
-5
-2
n/a
4
0.2
34
11
0.09
-1
1.0
0.01
2.4
0.2
8
7.1
0.59
0.22
1.37
3.23
0.45
2.08
0.51
0.131
0.56
0.10
0.60
0.14
0.39
0.055
0.27
0.037
2.6
-1
0211-1076
Hafv
663034
6628866
75.36
0.353
12.37
1.31
0.002
2.86
0.95
4.54
1.44
0.10
0.88
100.17
63
-20
3
8
65
-10
-5
-30
-0.1
n/a
-0.1
-1
1.4
-2
n/a
1.5
-3
-0.1
-0.5
-5
-2
n/a
46
1.3
64
20
0.09
16
1.4
0.52
7.0
4.7
203
11.2
8.53
1.18
31.9
73.4
7.16
25.7
4.35
0.847
2.81
0.42
2.11
0.41
1.26
0.178
1.20
0.180
-0.5
4
Summary of Investigations 2004, Volume 2
Appendix 5 – Chemistry of Proterozoic Intrusive Rocks
UTM Coordinates are for Zone 13 and Based on NAD 83.
Note: Hud G, Hudson granite suite; Hud G(Mo), with molybdenite; Nuel G; Nueltin granite suite; Nuel G(F), fluorite bearing; Lep peg; lepidolite-bearing pegmatite; and n/a, not analysed; negative values are below detection limits.
SAMPLE
Rock Name
UTM E
UTM N
SiO2
TiO2
Al2O3
Fe2O3
MnO
MgO
CaO
Na2O
K2O
P2O5
LOI
TOTAL
Cr
Ni
Co
Sc
V
Cu
Pb
Zn
Bi
Cd
In
Sn
W
Mo
S
As
Se
Sb
Ag
Ir
Au
Rb
Cs
Ba
Sr
Tl
Ga
Ge
Li
Ta
Nb
Hf
Zr
Y
Th
U
La
Ce
Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
F
Br
Be
%
%
%
%
%
%
%
%
%
%
%
%
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
%
ppm
ppm
ppm
ppm
ppb
ppb
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
%
ppm
ppm
0311-5005
Hud G
602981
6571838
71.64
0.333
13.72
2.09
0.025
0.45
1.02
3.46
5.29
0.08
0.69
98.80
13
4
2
1.5
18
4
36
67
-0.1
0.5
-0.1
-1
-0.5
-2
0.007
2.3
-3
-0.1
1.0
-5
-2
143
2.0
773
238
1.16
15
0.8
n/a
0.43
4.1
7.1
278
5.6
70.1
10.5
95.9
185
17.9
58.8
7.35
0.698
3.66
0.27
1.05
0.17
0.53
0.080
0.56
0.094
0.02
-0.5
1
0311-5008
Hud G
605028
6564182
72.20
0.131
14.67
1.55
0.029
0.56
2.25
4.20
3.17
0.07
0.59
99.41
15
9
3
6.1
17
4
29
56
0.2
0.4
-0.1
2
-0.5
-2
0.002
1.2
-3
-0.1
0.3
-5
-2
122
3.9
482
496
0.73
17
0.8
n/a
0.54
4.2
2.6
90
8.3
22.3
5.73
9.57
19.0
2.33
9.13
2.23
0.479
1.95
0.29
1.48
0.27
0.81
0.111
0.70
0.111
n/a
-0.5
3
Saskatchewan Geological Survey
0111-2210
Hud G
567646
6619507
76.43
0.133
12.66
1.08
0.017
0.47
1.04
2.87
5.01
0.10
0.58
100.40
-20
-20
2
2
9
-10
22
-30
-0.1
n/a
-0.1
2
-0.5
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
189
3.4
833
206
0.92
18
0.8
n/a
1.06
4.4
1.8
65
6.5
13.0
1.23
22.8
41.0
3.93
13.3
2.17
0.842
1.30
0.22
1.19
0.23
0.61
0.089
0.54
0.069
n/a
n/a
2
0111-2210A
Hud G
567646
6619507
72.07
0.176
14.42
1.40
0.019
0.57
0.81
3.24
5.76
0.09
0.59
99.14
-20
-20
3
4
15
-10
29
-30
-0.1
n/a
-0.1
-1
-0.5
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
224
3.8
991
228
1.13
21
0.9
n/a
1.20
6.3
6.5
229
9.7
75.7
4.60
107
192
18.2
59.6
7.74
1.22
3.12
0.46
2.04
0.31
0.84
0.098
0.63
0.087
n/a
n/a
2
0211-5009
Hud G (Mo)
620937
6610515
72.06
0.121
14.97
1.62
0.019
0.68
1.09
4.35
3.78
0.04
1.06
99.80
26
-20
2
1.3
10
13
9
-30
0.7
n/a
-0.1
-1
-0.5
116
n/a
2.3
-3
-0.1
-0.5
-5
-2
108
5.1
547
232
0.70
14
0.9
n/a
0.07
1.9
1.9
76
2.2
13.4
1.40
18.7
35.3
3.03
9.41
1.38
0.315
0.74
0.09
0.40
0.07
0.21
0.028
0.19
0.033
n/a
3.7
4
0111-263
Hud G
562829
6619675
64.36
0.300
18.34
1.69
0.014
0.81
1.24
3.51
9.25
0.10
0.54
100.16
-5
-20
2
2.2
12
-10
112
40
0.5
n/a
-0.1
1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
-3
306
1.5
2,090
317
1.71
24
0.9
n/a
0.24
5.7
9.2
353
8.1
172
1.61
296
544
50.9
163
16.5
1.62
9.21
0.59
2.08
0.28
0.68
0.071
0.38
0.048
n/a
-0.5
1
0311-3058
Nuel G
607314
6581147
72.06
0.222
13.59
2.18
0.025
0.36
0.81
3.11
5.87
0.06
0.73
99.01
16
5
2
2.9
15
6
45
54
0.9
0.5
-0.1
-1
-0.5
-2
0.011
-0.5
-3
0.4
0.6
-5
-2
261
13.0
552
139
2.26
16
0.9
n/a
0.51
6.5
5.8
208
6.7
64.5
9.79
72.4
149
14.5
47.7
6.59
0.546
3.88
0.33
1.25
0.20
0.62
0.090
0.62
0.105
0.03
-0.5
2
0211-1162
Nuel G (F)
666743
6601288
71.77
0.150
13.02
1.76
0.020
0.19
1.92
2.30
7.03
0.02
0.99
99.18
7
3
2
2.6
-5
10
71
74
-0.1
-0.3
-0.1
4
1.6
2
-0.001
-0.5
-3
0.1
-0.3
-5
-2
434
3.0
345
109
1.55
19
1.2
n/a
0.56
10.5
1.8
40
19.5
46.6
5.61
7.35
12.4
1.51
5.17
0.96
0.664
0.94
0.18
1.15
0.28
1.01
0.184
1.36
0.251
0.16
-0.5
3
0211-1163
Nuel G (F)
666995
6600246
68.99
0.692
13.86
4.67
0.081
0.64
2.17
2.83
5.44
0.24
0.36
99.97
-5
3
-1
9.6
26
13
51
154
-0.1
-0.3
-0.1
3
1.2
2
-0.001
1.5
-3
-0.1
-0.3
-5
-2
273
3.2
1157
200
1.36
25
1.5
n/a
1.88
26.9
14.2
569
53.5
51.0
4.40
134
281
31.4
110
17.6
2.12
10.8
1.61
8.82
1.68
4.98
0.794
4.76
0.742
0.31
-0.5
4
0211-1177
Nuel G (F)
667760
6604219
74.73
0.095
14.03
1.18
0.016
0.41
1.17
4.61
3.63
0.04
0.44
100.34
11
3
2
0.3
16
9
20
85
-0.1
-0.3
-0.1
-1
-0.5
-2
-0.001
1.7
-3
-0.1
0.6
-5
-2
124
2.1
804
357
0.68
17
0.8
n/a
0.42
4.1
1.9
56
3.8
15.8
1.04
16.3
25.1
2.75
8.86
1.17
0.312
0.64
0.07
0.39
0.08
0.23
0.033
0.23
0.048
0.11
-0.5
1
0111-2230A
Nuel G
589450
6613300
75.81
0.044
13.46
0.66
0.011
0.11
0.74
3.75
5.20
0.03
0.29
100.11
-20
-20
-1
3
-5
-10
22
-30
-0.1
n/a
-0.1
5
-0.5
-2
n/a
-5
n/a
0.2
-0.5
n/a
n/a
300
8.1
227
78
1.58
24
1.3
n/a
5.85
20.4
3.1
67
23.3
22.5
7.08
7.48
14.5
1.81
6.96
1.99
0.248
2.10
0.41
2.81
0.64
1.90
0.321
2.22
0.360
n/a
n/a
4
0111-380
Nuel G
586680
6604540
74.37
0.084
13.71
1.60
0.015
0.23
0.92
3.43
5.33
0.03
0.49
100.22
-5
-20
1
1.2
11
-10
50
-30
0.4
n/a
-0.1
-1
-0.5
-2
n/a
-0.5
-3
-0.2
-0.5
-5
-2
220
4.7
852
240
1.30
18
1.0
n/a
0.73
4.2
5.0
148
7.8
44.9
18.4
21.2
57.0
4.66
16.0
3.06
0.450
2.02
0.30
1.38
0.25
0.71
0.107
0.74
0.125
n/a
1
1
0211-1010
Felsite
654259
6622208
72.62
0.196
14.47
1.59
0.019
0.52
1.25
5.13
3.63
0.07
0.68
100.18
86
-20
6
2.1
18
50
7
55
-0.1
n/a
-0.1
-1
-0.5
-2
n/a
1.4
-3
-0.1
-0.5
-5
-2
117
1.2
582
319
0.44
22
-0.5
n/a
1.25
12.9
3.2
124
11.5
13.2
5.64
28.3
54.8
5.13
17.8
3.07
0.642
2.18
0.34
1.79
0.36
1.15
0.175
1.15
0.167
n/a
-0.5
3
23
0211-1501
Lep peg
623611
6644963
74.35
0.010
14.95
0.22
0.393
0.03
0.09
4.84
3.06
0.04
1.17
99.14
-5
2
2
0.7
-5
11
8
117
-0.1
-0.3
0.4
187
4.2
-2
-0.001
-0.5
-3
-0.1
-0.3
-5
-2
3,380
530
13
7
24.9
68
7.0
3,470.0
74.1
32.2
4.6
23
1.0
2.09
1.23
0.28
0.79
0.09
0.34
0.10
0.022
0.10
0.02
0.11
0.02
0.05
0.006
0.03
0.004
n/a
-0.5
218
0111-5
Diabase
557050
6648340
47.99
0.946
13.88
13.71
0.208
8.66
10.53
1.87
0.93
0.09
1.56
100.38
162
99
63
50
294
218
5
115
0.3
n/a
-0.1
3
-0.5
-2
n/a
-5
n/a
-0.2
-0.5
n/a
n/a
27
2.0
144
174
0.12
18
1.6
n/a
1.79
4.9
2.0
73
21.1
0.82
0.18
7.10
16.3
2.11
9.77
2.79
0.899
3.18
0.60
3.84
0.83
2.13
0.362
2.15
0.332
n/a
n/a
-1
Summary of Investigations 2004, Volume 2
Appendix 6 – Iron Sulphide– and Quartz Vein–bearing Samples from the Phelps Lake Area
UTM Coordinates are for Zone 13 and Based on NAD 83.
Note: ESIFs, Ennadai Group sulphide facies iron formation; EVFr, Ennadai felsic volcanic (rhyolite); EVM, Ennadai mafic volcanic; bldr, boulder, po, pyrrhotite; py, pyrite; qtzite, quartzite; QV, quartz veins; negative values are below detection limits.
Sample ID
Rock Name
UTM E
UTM N
Cr
Ni
Co
Sc
Cu
Pb
Zn
Sn
W
Mo
As
Se
Sb
Ag
Ir
Au
Hg
Rb
Cs
Ba
Sr
Ta
Hf
Th
U
La
Ce
Nd
Sm
Eu
Tb
Yb
Lu
Br
Fe
Ca
Na
ppm
ppm
ppm
ppm
ppm
ppm
ppm
%
ppm
ppm
ppm
ppm
ppm
ppm
ppb
ppb
ppm
ppm
ppm
ppm
%
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
%
%
%
0111-36
ESIFs bldr
580910
6648818
20
-20
34
2.1
418
-2
826
-0.01
-1
-1
1.3
-3
-0.1
-5
-5
5
-1
-15
-1
-50
-0.05
-0.5
-1
0.8
-0.5
2.9
6
-5
0.7
0.3
-0.5
1
0.16
0.9
12.2
3
0.11
0111-66
EVM,py,QV
562753
6635405
48
-37
16
32.1
433
7
247
-0.01
-1
4
-0.5
-3
0.2
-5
-5
-2
-1
32
4
-50
-0.05
3.8
2
2.5
1
5.9
12
-5
2.9
0.8
0.5
2.1
0.31
-0.5
18.5
2
1.22
Saskatchewan Geological Survey
0111-97
EVM,py,QV
562498
6634737
38
-37
33
48.1
306
-2
176
-0.01
-1
-1
-0.5
-3
-0.1
-5
-5
3
-1
79
2
250
-0.05
-0.5
2
-0.2
-0.5
4.9
12
7
2.6
0.9
-0.5
3.1
0.47
-0.5
12.7
7
1.19
0111-98
Py qtzite bldr
562498
6634737
68
-26
13
11.3
57
5
121
-0.01
-1
2
-0.5
-3
-0.1
-5
-5
-2
-1
102
3
600
-0.05
-0.5
5
12.7
1.2
39.1
66
26
4.7
1.2
-0.5
1.9
0.3
-0.5
3.59
-1
0.85
0111-110
EVFr,py-po
578929
6637657
143
138
17
12.4
34
-2
-50
-0.01
-1
-1
2.2
-3
-0.1
-5
-5
9
-1
73
1
500
-0.05
-0.5
3
6.1
1.2
23.2
42
11
3.4
1.1
-0.5
1.2
0.19
-0.5
3.8
-1
2.69
0111-125 0111-149A
ESIFs bldr
ESIFs
582604
578030
6630215
6646992
34
11
-30
112
9
80
16.4
1.4
143
883
5
5
118
292
-0.01
-0.01
-1
-1
2
-1
-0.5
2.3
-3
4
0.2
0.2
-5
-5
-5
-5
3
39
-1
-1
45
-15
5
-1
220
-50
-0.05
-0.05
-0.5
-0.5
2
-1
4.6
0.8
1.5
-0.5
17
3.2
37
7
9
-5
2.7
0.7
1.1
0.4
0.6
-0.5
11.5
0.5
1.73
0.08
1.7
-0.5
11.5
14.3
4
5
0.9
0.08
0111-149B
EVM,py,QV
577988
6647081
35
-30
41
27.1
314
7
104
-0.01
-1
-1
1
-3
0.3
-5
-5
28
-1
42
3
210
-0.05
0.8
2
0.7
-0.5
6.2
14
7
3.2
1
-0.5
3.2
0.48
-0.5
8.19
4
0.82
0111-150
ESIFs bldr
597477
6628684
70
187
163
11.7
312
-2
71
-0.01
-1
-1
-0.5
-3
-0.1
-5
-5
9
-1
25
1
-50
-0.05
-0.5
-1
-0.2
0.8
3
4
-5
0.8
0.6
-0.5
1.1
0.17
-0.5
22.2
4
0.34
0111-4032
EVM,py,QV
577801
6647678
20
-20
7
1.4
122
-2
98
-0.01
-1
-1
7.4
-3
-0.1
-5
-5
533
-1
-15
-1
-50
-0.05
-0.5
-1
0.3
-0.5
1.2
-3
-5
0.3
-0.2
-0.5
-0.2
-0.05
1.8
4.14
-1
0.06
0111-4098
EVM,py,bldr
573436
6619575
19
102
45
3.1
256
30
1160
-0.01
3
2
0.9
-3
-0.1
-5
-5
13
-1
28
5
320
-0.05
-0.5
-1
0.8
-0.5
2.8
5
-5
0.5
0.4
-0.5
0.7
0.11
-0.5
9.22
-1
0.05
0111-4098R
EVM,py,bldr
573436
6619575
18
86
47
3.2
n/a
n/a
1180
-0.01
3
-1
1
-3
0.1
-5
-5
12
-1
26
5
330
-0.05
-0.5
-1
0.8
-0.5
3
5
-5
0.6
0.3
-0.5
0.7
0.11
-0.5
9.14
-1
0.05
24
Summary of Investigations 2004, Volume 2
Similar