Download Attention - News - University of Nebraska–Lincoln

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Transcript
Attention: News, Education, Science, Business Editors
Photo: A color JPEG image of Mike Nastasi is available for download at the University Communications website.
http://newsroom.unl.edu/releases/downloadables/photo/20120726nastasi.jpg
Contact: Mike Nastasi, Professor, Mechanical and Materials Engineering, and Director, Nebraska Center for Energy Sciences
Research, 402-472-3852, [email protected]
UNL news website: http://newsroom.unl.edu
Nastasi earns grant to develop nuclear reactor metal-ceramic composite
Lincoln, Neb., July 26, 2012 -- Mike Nastasi, director of the Nebraska Center for Energy Sciences
Research at the University of Nebraska-Lincoln, had one of 13 projects selected recently by the U.S.
Department of Energy to improve nuclear reactor safety, performance and cost competitiveness.
Nastasi received a $980,000 DOE grant for the project exploring development of advanced metal
and ceramic composites that could lead to safer and more efficient electricity production in advanced
nuclear reactors. He will team up with researchers at MIT and Texas A&M to develop the material.
"We will use an interesting feature we observed when I was at Los Alamos (National Laboratory),
where the interface between two different types of materials is actually an excellent sink for absorbing
radiation defects," Nastasi said. "If you have a material in a reactor, a fuel pin, uranium oxide and the fuel
cladding -- the structural material holding the pin -- it needs to have mechanical properties, and not break
under the environment of the generating energy. During the fission process, energetic particles -- neutrons
-- are made that sustain the reaction and also disrupt the local atomic arrangement. That damages the
material and can make the material brittle so it doesn't have the same mechanical characteristics it had
when it started."
If the pin loses its mechanical abilities, a catastrophic failure can occur in the reactor, Nastasi said.
The fuel rod needs to be able to sustain its mechanical integrity throughout its entire lifetime.
"The current material used in many reactors and the reactor in Fukushima (Japan) is made of
something called zircaloy -- zirconium alloy. Zirconium is very reactive thermodynamically. When put in
the presence of heat and water it will react and form zirconium oxide," he said. "Hydrogen, an explosive
gas, can result. The explosions at the Fukushima nuclear reactor in March 2011 were the result of fuel
rods getting too hot, and when water was added to cool it, steam was generated making zirconium oxide,
hydrogen collected in the building and exploded."
(more)
321 Canfield Administration Bldg. / P.O. Box 880424 / Lincoln, NE 68588-0424
(402) 472-2211 FAX (402) 472-7825 / http://newsroom.unl.edu/releases/
Nastasi earns grant to develop nuclear reactor metal-ceramic composite, Page 2
Nastasi's idea is an amorphous ceramic material -- amorphous meaning the atoms are arranged in a
nonregular way in the material, such as in window glass; it will have a feature they believe will allow the
damage from the neutron bombardment to recover itself back into the original configuration. As a
composite, a silicon-carbon-oxygen mixture will be in contact with iron, and the interface between the
ceramic and iron is an ideal sink for the radiation damage to go to, Nastasi said. If the amorphous material
doesn't heal the damage, it's hoped the interface between the iron and the amorophous ceramic provide
another layer of protection.
Nastasi joined UNL in January to direct the energy research center; he is also Elmer Koch Professor
of mechanical and materials engineering. Established in 2006, the center facilitates collaborative research
into renewable domestic energy resources and energy efficiency to create economic opportunities for
Nebraska. It is a partnership between UNL and Nebraska Public Power District and other industry partners.
This is Nastasi's first grant at UNL. He previously worked with the Department of Energy at Los
Alamos National Laboratory in New Mexico. He focuses on developing materials for extreme radiation
environments. The three-year project will fund a lab and a post-doctoral researcher. MIT will do the
modeling and UNL and Texas A&M will conduct the experiments.
"Nebraska has a significant fraction of its energy produced through nuclear energy," Nastasi said.
"I believe that nuclear energy will always be part of the energy portfolio: solar, wind, renewables, are
intermittent forms of energy. The material we're trying to develop is for advanced nuclear reactors,
designed to extract more of the fuel's energy from the reactor. At present, there really isn't a material to
meet the design goals of advanced nuclear reactors.
"And ultimately, it will be safer."
Energy Secretary Steven Chu said, "(These) awards will help train and educate our future nuclear
energy scientists and engineers, while advancing the technological innovations we need to make sure
America's nuclear industry stays competitive in the 21st century."
The 13 projects across the U.S. represent a $10.9 million investment.
30
Writer: Kelly Bartling, University Communications, 402-472-2059, [email protected]