Wang X and Chapman K (eds), “Lipid Signaling in Plants” Frontiers Download

Transcript
Wang Lab’s Publication List
8/30/2016
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Cao H, Zhuo L, Su S, Sun L, Wang X. 2016. Phospholipase NPC1 effect on silicon
distribution and mechanical strength of stem nodes of rice. Plant J 86, 308-321.
Sun L, Yu Y, Hu W, Min M, Kang H, Li Y, Hong Y, Wang X, Hong Y. 2016. Ribosomal
protein S6 kinase 1 coordinates with TOR-Raptor2 to regulate thylakoid membrane
biosynthesis in rice. Biochim Biophys Acta 1861, 639-649.
Lu S, Yao S, Wang G, Zhou Y, Hong Y, and Wang X. 2016. Phospholipase Dε enhances
oilseed rape growth and seed production in response to nitrogen availability. Plant
Biotech. J. 14:926-937
Hong Y, Zhao J, Guo L, Kim S, Deng X, Wang G, Li M, Wang X. 2016 Plant
Phospholipases D and C and Their Diverse Functions in Stress Responses . Progress in
Lipid Research 62:55-74
Liu Y, Wang X. 2016. Positional Analysis of Fatty Acid in Phospholipids by PLA2
Treatment. Bio-protocol x(x): exxx. http://www.bio-protocol.org/exxx
Liu Y, Wang X. 2016. Plant Glycerol Lipid Extraction and Profiling Bio-protocol x(x):
exxx. http://www.bio-protocol.org/exxx
Liu Y, Wang G, Wang X. 2015. Role of aminoalcoholphosphotransferases 1 and 2 in
phospholipid homeostasis in Arabidopsis. Plant Cell 27, 1512-1528
Vu HS, Roston R, Shiva S, Hur M, Wurtele ES, Wang X, Shah J, Welti R. 2015.
Modifications of membrane lipids in response to wounding of Arabidopsis thaliana leaves.
Plant Signal. Behav. 10(9):e1056422
Liu G, Zhang K, Ai J, Deng X, Hong Y, Wang, X. 2015. Patatin-related phospholipase A
pPLAIIIα modulates the longitudinal growth of vegetative tissues and seeds in rice J. Exp.
Bot. 66:6945-6955
Liu H, Yang Q, Fan C, Zhao X, Wang X, Zhou Y. 2015. Transcriptomic basis of
functional difference and coordination between seeds and the silique wall of Brassica
napus during the seed-filling stage. Plant Sci. 233, 186-199
Li M, Wei F, Tawfall A, Tang M, Saettele A, Wang X. 2015. Overexpression of patatinrelated phospholipase AIIIδ increased seed oil content and altered growth in Camelina
sativa. Plant Biotech. J. 13, 766-778
Guo L, Ma F, Wei F, Fanella B, Allen DK, Wang X. 2014. Cytosolic glyceraldehyde-3phosphate dehydrogenases affect cellular metabolism and promote seed oil accumulation.
Plant Cell 26, 3023-3035.
Li M, Baughman E, Roth MR, Han X, Welti R, Wang X. 2014. Quantitative profiling and
pattern analysis of triacylglycerol species in Arabidopsis seeds by electrospray ionization
mass spectrometry. Plant J. 77, 160–172.
Woods C, Kim S, Devaiah S, Wang X, 2014. Non-specific phospholipase C5 and
diacylglycerol promote lateral root development under mild salt stress in Arabidopsis.
Plant Cell Environ. 37, 2002-2013.
Vu H, Shiva S, Roth M, Tamura P, Zheng L, Li M, Sarowar S, Honey S, McEllhiney D,
Hinkes P, Seib L, Williams T, Gadbury G, Wang X, Shah J, Welti R. 2014. Lipid changes
after leaf wounding in Arabidopsis thaliana: Expanded lipidomic data form the basis for
lipid co-occurrence analysis. Plant J. 80, 728–743.
1
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
Li M, Markham JE, Wang X. 2014. Overexpression of patatin-related phospholipase AIIIβ
altered the content and composition of sphingolipids in Arabidopsis. Frontier Plant
Biology. 5, 553.
Li M, Butka E, Wang X. 2014. Comprehensive quantification of triacylglycerols in
soybean seeds by electrospray ionization mass spectrometry with multiple neutral loss
scans. Scientific Reports 4, 6581.
Yao H, Wang G, Wang X. 2014. Nuclear translocation of proteins and the effect of
phosphatidic acid. Plant Signal. Behav. 9:e977711
Zheng Y, Li M, Wang X. 2014. Proteomic insight into reduced cell elongation resulting
from overexpression of patatin-related phospholipase pPLAIIIδ in Arabidopsis thaliana.
Plant Signal. Behav. 9, e28519.
Gan Y, Li H, Xie Y, Wu W, Li M, Wang X, Huang J. 2014. THF1 mutations lead to
increased basal and wound-induced levels of oxylipins that stimulate anthocyanin
biosynthesis via COI1 signaling in Arabidopsis. J Integr Plant Biol. 56, 916–927.
Dong Y, Li M, Zhang Peng, Wang X, Fan C, Zhou Y 2014. Patatin-related phospholipase
pPLAIIIδ influences auxin-responsive cell morphology and organ size in Arabidopsis and
Brassica napus. BMC Plant Biology 2014, 14:332 doi:10.1186/s12870-014-0332-1
Yu E, Fan C, Yang Q, Li X, Wan B, Dong Y, Wang X, Zhou Y. 2014. Identification of
heat responsive genes in Brassica napus siliques at the seed-filling stage through
transcriptional profiling. PLoS One 9(7):e101914. doi: 10.1371/journal.pone.0101914.
Wang X, Guo L, Wang G, Li M. 2014. PLD: Phospholipase Ds in plant signaling. X.
Wang (ed.), Phospholipases in Plant Signaling, Signaling and Communication in Plants 20,
DOI 10.1007/978-3-642-42011-5_1, © Springer-Verlag Berlin Heidelberg.
Wang X, Su Y, Liu Y, Kim S, Fanella B. 2014. Phosphatidic acid as lipid messenger and
growth regulators in plants. X. Wang (ed.), Phospholipases in Plant Signaling, Signaling
and Communication in Plants 20, DOI 10.1007/978-3-642-42011-5_1, © Springer-Verlag
Berlin Heidelberg.
Li M, Wang X 2014. pPLA: Patatin-related phospholipase As with multiple biological
functions. X. Wang (ed.), Phospholipases in Plant Signaling, Signaling and
Communication in Plants 20, DOI 10.1007/978-3-642-42011-5_1, © Springer-Verlag
Berlin Heidelberg.
Yao H, Wang G, Guo L, Wang X. 2013. Phosphatidic acid interacts with a MYB
transcription factor and regulates its nuclear localization and function in Arabidopsis.
Plant Cell 25, 5030-5042
Kim S, Guo L, Wang X. 2013. Phosphatidic acid binds to cytosolic glyceraldehyde-3phosphase dehydrogenase and promotes its cleavage in Arabidopsis. J. Biol. Chem. 288,
11834-11844.
Li M, Bahn SC, Fan C, Li J, Phan T, Ortiz M, Roth MR, Welti R, Jaworski J, Wang X.
2013. Patatin-related phospholipase pPLAIIIδ increases seed oil content with long chain
fatty acids. Plant Physiol. 162, 39-51
Zhao J. Devaiah SP, Wang C, Welti R, Wang X. 2013. Phospholipase Dβ1 modulates
defense responses to bacterial and fungal pathogens in Arabidopsis. New Phytologist 199,
228-240.
Lu S, Bahn S, Qu G, Qin H, Hong Y, Xu Q, Zhou Y, Hong Y, Wang X. 2013. Increased
expression of phospholipase Dα1 in guard cells decreases water loss with improved seed
production in Brassica napus. Plant Biotech. J. 11, 380–389.
2
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
Narasimhan R, Wang G, Roth M, Welti R, Wang X. 2013. Differential changes in
galactolipid and phospholipid species in soybean leaves and roots under nitrogen
deficiency and after nodulation. Phytochemistry 96, 81-91.
Zhao J, Wang X. 2013. Biochemical analysis of the interaction between phospholipase
Dα1 and GTP-binding protein α-subunit from Arabidopsis thaliana. Methods Mol Biol.
1043, 21-35.
Labusch C, Shishova M, Effendi Y, Li M, Wang X, Scherer GFE. 2013. Patterns and
timing in expression of early auxin-induced genes in phospholipase A (pPLA) T-DNA
insertion mutants reveal a function in auxin signaling. Molecular Plant 6, 1473-1486.
Wang X, Chapman KD. 2013. Lipid signaling in plants. Front Plant Sci. 4,216.
Pappan K, Wang X. 2013. Assaying different types of plant phospholipase D activities in
vitro. Methods Mol. Biol. 1009, 205-217.
Liu Y, Su Y, Wang X. 2013. Phosphatidic acid-mediated signaling. Adv. Exp. Med. Biol.
991, 159-176.
Guo L, Devaiah SP, Narasimhan R, Pan P, Zhang Y, Zhang Z, Wang X. 2012. Cytosolic
glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce
hydrogen peroxide signals in Arabidopsis response to stress. Plant Cell, 24, 2200-2212.
Guo L, Mishra G, Markham JE, Li M, Tawfall A, Welti R, Wang X. 2012. Connections
between sphingosine kinase and phospholipase D in signaling Arabidopsis response to
abscisic acid. J. Biol. Chem. 287, 8286-8296
Yang Y, Zheng Y, Bahn S, Pan X, Li M, Vu HS, Roth MR, Scheu B, Welti R, Wang X.
2012. The patatin-containing phospholipase A pPLAIIα modulates oxylipin formation and
water loss in Arabidopsis thaliana. Molecular Plant, 5, 452-460
Guo L, Wang X. 2012. Crosstalk between phospholipase D and sphingosine kinase in
plant stress signaling. Front. Plant Sci. 3, 51. doi: 10.3389/fpls.2012.00051
Wang G, Ryu S, Wang X. 2012 Plant phospholipases, an overview. Methods Mol Biol.
861,123-137.
Vu H, Tamura P, Galeva NA, Chaturvedi R, Williams TD, Wang X, Shah J, Welti R.
2012. Direct infusion tandem mass spectral profiling of oxylipin-containing Arabidopsis
thaliana phospholipids and galactolipids reveals varied patterns in response to different
stressors. Plant Physiol. 158, 324-339.
Chaturvedi R, Venables B, Petros R, Nalam V, Li M, Wang X, Takemoto L, Shah J. 2012.
Dehydroabietinal signaling in systemic acquired resistance. Plant J, 71. 161-172
Maatta S, Scheu B, Roth MR, Tamura P, Li M, Williams TD, Wang X, Welti R. 2012.
Levels of Arabidopsis thaliana leaf phosphatidic acids, phosphatidylserines, and most
trienoate-containing polar lipid molecular species increase during the dark period of the
diurnal cycle. Front. Plant Sci. 3, 49. doi: 10.3389/fpls.2012.00049
Chen XY, Li LG, Huang JR, Ruan YL, Wang X, Li L. 2012 Translate Plant Metabolism
into Modern Agriculture: A Starting Point. Mol. Plant 5, 291-293.
Hong Y, Wang X. 2012. Lipid Metabolism in the textbook “Plant Physiology and
Molecular Biology” Chen X and Xue H eds, pp 343-368, Higher Education Press, China
Li M, Bahn SC, Guo L, Musgrave W, Berg H, Welti R, Wang X. 2011. Patatin-related
phospholipase pPLAIIIβ-induced changes in lipid metabolism alter cellulose content and
cell elongation in Arabidopsis. Plant Cell. 23:1107-1123
Guo L, Mishra G, Taylor K, Wang X. 2011. Phosphatidic Acid binds and stimulates
Arabidopsis sphingosine kinases. J. Biol. Chem. 286:13336-13345.
3
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
Zhao J, Wang C, Bedair M, Welti R, Sumner LW, Baxter B, Wang X. 2011. Suppression
of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana.
PLoSONE, 6(12):e28086. Epub 2011 Dec 7.
Cheng Y, Zhou W, El sheery NI, Peters C, Li M, Wang X, Huang J. 2011.
Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD)
family reveals that a plastid-localized AtGDPD1 is involved in membrane lipid remodeling
under phosphate deficiency. Plant J. 66:781-795.
Peters C, Li M, Narasimhan R, Roth M, Welti R Wang X. 2010. Non-specific
phospholipase C NPC4 promotes response to abscisic acid and tolerance to hyperosmotic
stress in Arabidopsis. Plant Cell 22:2642-2659.
Scherer GFE, Ryu SB, Wang X, Matos AR, Heitz T. 2010. Patatin-related phospholipase
A, subfamilies and functions in plants and animals Trends Plant Science 15:693-700.
Pan X, Welti R Wang X. 2010 A liquid chromatography-mass spectrometry method for
quantitative analysis of major plant hormones in crude plant extracts. Nature Protocols 5,
986 – 992.
Hong Y, Zhang W, Wang X. 2010. Lipid signaling in plant response to hyperosmotic
stress. Plant Cell Environ. 33, 627–635
Zhang W, Wen B, Li W, Hong Y, Wang X 2010. Plant Phospholipase D. in '
Lipid Signaling in Plants' Munnik T ed, Springer-Verlag Berlin Heidelberg pp 39-62.
Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X.
2009. Phospholipase D and phosphatidic acid mediate reactive oxygen species production
in abscisic acid-promoted stomatal movements. Plant Cell 21,2357-2377.
Hong Y, Devaiah SP, Bahn SC, Thamasandra BN, Li M, Welti R, Wang X. 2009.
Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and
growth. Plant J. 58,376-387.
Li M, Hong Y, Wang X 2009. Phospholipase D- and phosphatidic acid-mediated
signaling in plants. Biochem Biophys Acta 179,927-935.
Pan X, Wang X. 2009. Quantitative profiling of plant hormones by mass spectrometry. J.
Chromatography B 877, 2806-2813.
Wang, X, Welti, R. 2009. Understanding plant lipids. ASBMB Today. July. p. 22.
Hong Y, Pan X, Welti R, Wang X. 2008. Phospholipase D3 is involved in hyperosmotic
responses in Arabidopsis. Plant Cell 20, 803-816
Li W, Li M, Welti R, Wang X. 2008. Differential degradation of extraplastidic and
plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana. J. Biol.
Chem. 283, 461-468.
Pan X, Welti R, Wang X 2008. Simultaneous quantification of phytohormones and related
metabolites in crude plant extracts by liquid chromatography-electrospray tandem mass
spectrometry. Phytochemistry 69, 1773-1781.
Hong Y, Zheng S, Wang X 2008. Dual functions of phospholipase D1 in plant response
to drought. Molecular Plant 1: 262-269
Hong Y, Pan X, Welti R, Wang X. 2008. The effect of Phospholipase D3 on Arabidopsis
response to hyperosmotic stress and glucose. Plant Signaling & Behavior 3, 1-2.
Boss W, Lynch D, Wang X. 2008. Lipid-mediated signaling. Annual Plant Reviews 33,
202-243.
4
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
Yang W, Devaiah S, Pan X, Isaac G, Welti R, Wang X. 2007. AtPLAI is an acyl
hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to
botrytis cinerea. J. Biol. Chem. 282, 18116–18128
Devaiah SP, Pan X, Roth M, Welti R, Wang X. 2007. Enhancing seed quality and viability
by suppressing phospholipase D in Arabidopsis. Plant Journal. 50, 950–957
Wang X, Zhang W, Li W, Mishra G. 2007. Phospholipid signaling in plant response to
drought and salt stress. In Advances in Molecular Breeding towards Salinity. Eds, M
Jenks, P Hasegawa, Springer pp. 183-192.
Welti R, Isaac G, Tamura P, Esch SW, Sparks A, Jeannotte R, Roth M, Maatta S, Williams
TD, Shah J, Wang X. 2007. Lipid profiling: Analysis of gene function and physiological
responses in Arabidopsis. In Current Advances in the Biochemistry and Cell Biology of
Plant Lipids. Eds, C. Benning, J. Ohlrogge pp. 287-291
Welti R, Shah J, Li W, Li M, Chen J, Burke JJ, Fauconnier ML, Chapman K, Chye ML,
Wang X. 2007. Plant lipidomics: discerning biological function by profiling plant complex
lipids using mass spectrometry. Front. Biosci. 12, 2494-2506.
Esch SW, Tamura P, Sparks AA, Roth MR, Devaiah SP, Heinz E, Wang X, Williams TD,
Welti R. 2007. Rapid characterization of fatty acyl composition of complex lipids by
collision-induced dissociation time-of-flight mass spectrometry. J Lipid Res. 48, 235-241
Welti R, Roth M, Deng Y, Shah J, Wang X. 2007. Lipidomics: ESI-MS/MS-based
profiling to determine the function of genes involved in metabolism of complex lipids. In
Concepts in Plant Metabolomics, Springer, Dordrecht, The Netherlands. Eds, N. Basil
and E.S. Wurtele. pp 87-92.
Mishra, G, Zhang W, Deng F, Zhao J, Wang X. 2006. A bifurcating pathway directs
abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312, 264266.
Li M, Qin C, Welti R, Wang X. 2006. Double knockouts of phospholipase Dζ1 and ζ2 in
Arabidopsis affect root elongation during phosphate-limited growth, but do not affect root
hair patterning. Plant Physiol. 140: 761-770
Li M, Welti R, Wang X. 2006. Quantitative profiling of Arabidopsis polar glycerolipids in
response to phosphorus starvation. Roles of phospholipases Dζ1 and Dζ2 in
phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in
phosphorus-starved plants. Plant Physiol. 142, 750-761.
Wang X, Devaiah SD, Zhang W, Welti R. 2006. Signaling functions of phosphatidic acid.
Prog. Lipid Research 45, 250-278.
Qin C, Li M, Qin W, Bahn SC, Wang C, Wang X. 2006. Expression and characterization
of Arabidopsis phospholipase Dgamma2. Biochim. Biophys. Acta. 1761, 1450-1458
Devaiah SP, Roth MR, Baughman E, Li M, Welti R, Wang X. 2006. Lipid Profiling to
quantitatively display polar glycerolipid species and the role of phospholipase Dα1 in the
species in Arabidopsis tissues. Phytochemistry 67, 1907-1924.
Rajashekar CB, Zhou HE, Zhang Y, Li W, Wang X. 2006. Suppression of phospholipase
Dalpha1 induces freezing tolerance in Arabidopsis: response of cold-responsive genes and
osmolyte accumulation. J. Plant Physiol. 163, 916-926.
Zhang Y, Li SZ, Li J, Pan X, Cahoon RE, Jaworski JG, Wang X, Jez JM, Chen F, Yu O.
2006. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and
Mammalian cells. J. Am. Chem Soc. 128, 13030-13030.
5
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
Wang X, Li W, Li M, Welti R. 2006. Profiling lipid changes in plant response to low
temperatures. Physiol. Plant. 126, 90-96
Wang X. 2006. Phospholipid-derived signaling in plant response to temperature and water
stresses. Genetic Engineering, 27: 57-66.
Zhang W, Yu L, Zhang Y, Wang X. 2005. Phospholipase D in the signaling network of
plant responses to abscisic acid and reactive oxygen species Biochim. Biophys. Acta 1736,
1-9.
Wang X. 2005. Regulatory functions of phospholipase D and phosphatidic acid in plant
growth development, and stress responses. Plant Physiol. 139:566-573
Welt, R, Shah J, LeVine S, Esch W, Williams T, Wang X. 2005. High throughput lipid
profiling to identify and characterize genes involved in lipid metabolism, signaling, and
stress response. In Functional Lipidomics. Edited by L. Feng and G. Prestwich, CRC
Press , Boca Raton, FL. pp. 308-320.
Zhang W, Qin C, Zhao J, Wang X. 2004. Phospholipase D1-derived phosphatidic acid
interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl.
Acad. Sci. USA 101, 9508-9513.
Li W, Li M, Zhang W, Welti R, Wang X. 2004. The plasma membrane-bound
phospholipase D enhances freezing tolerance in Arabidopsis. Nature Biotech. 22, 427433.
Zhao J, Wang X. 2004. Arabidopsis phospholipase Dα1 interacts with the heterotrimeric
G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled
receptors. J. Biol. Chem. 279,1794-1800.
Pappan K, Zheng L, Krishnamoorthi R, Wang X. 2004. Evidence for and characterization
of Ca2+ binding to the catalytic region of Arabidopsis thaliana phospholipase Dβ. J. Biol.
Chem. 279, 47833-47839.
Wang X. 2004. Lipid signaling. Curr. Opin. Plant Biol. 7, 329-336
Welti R, Wang X. 2004. Lipid species profiling: A high throughput approach to identify
lipid compositional changes and determine the function of genes involved in lipid
metabolism and signaling. Curr. Opin. Plant Biol. 7, 337-344
Zhang W., C. Wang, C. Qin, T. Wood, G. Olafsdottir, and X. Wang. 2003. Phospholipase
2O2-induced cell death in Arabidopsis. Plant Cell 15,
2285-2295.
McGee J.D., J. Roe, T.A. Sweat, X. Wang, J.A. Guikema, and J.E. Leach. 2003. Rice
phospholipase D isoforms show differential cellular location and gene induction. Plant
Cell Physiol. 44, 1013-1026.
Welti, R., X. Wang, and T. D. Williams. 2003. Electrospray ionization tandem mass
spectrometry scan modes for plant chloroplast lipids. Anal. Biochem. 314, 149-152.
Kusner, D.J., J.A. Barton, C. Qin, X. Wang, S.S. Iyer. 2003. Evolutionary conservation of
physical and functional interactions between phospholipase D and actin. Arch. Biochem.
Biophys. 412: 231-241.
Qin, C, W. Li, Y. Hong, W. Zhang, T. Wood, M. Li, R. Welti, and X. Wang 2003. Two
novel types of Arabidopsis phospholipase D: oleate-stimulated PLD and Ca2+independent PLD1. in Advanced Research on Plant Lipids, ed. N. Murata, M Yamada,
I. Nishida, H. Okuyama. J. Sekiya, and W. Hajime. Kluwer Academic Publishers,
Dordrecht/Boston/London. pp. 259-262.
Welti R and X. Wang 2003. Lipidomics. Inform 14: 607-608
6
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
Wang, X. 2002. Phospholipase D in hormonal and stress signaling. Current Opinion in
Plant Biol. 5: 408-414.
Qin, B, C. Wang, and X. Wang. 2002. Kinetic analysis of Arabidopsis phospholipase D:
substrate preference and mechanism of activation by calcium and phosphatidylinositol 4,5bisphosphate. J. Biol. Chem. 277: 49685-49690.
Kusner D.J., J.A. Barton, K-K. Wen, X. Wang, P.A. Rubenstein, and S.S. Iyer. 2002.
Regulation of phospholipase D activity by actin: I actin exerts bidirectional modulation of
mammalian PLD activity in a polymerization-dependent, isoform-specific manner. J.
Biol. Chem. 277: 50683-50692.
Welti, R., W. Li, M. Li, Y. Sang, H. Biesiada, H-E. Zhou, C.B. Rajashekar, T.D. Williams,
and X. Wang. 2002. Profiling membrane lipids in plant stress responses: role of
phospholipase D in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 277:
31994-32002.
Zheng, L., J. Shan, R. Krishnamoorthi, and X. Wang. 2002. Activation of plant
phospholipase D by phosphatidylinositol 4,5-bisphosphate: characterization of binding
site and mode of action. Biochemistry 41: 4546-4553.
Wang, X. C. Wang, Y. Sang, C. Qin, and R. Welti. 2002. Networking of phospholipases
in plant signal transduction. Physiol. Plant. 128: 1057-1068.
Qin, C. and X. Wang. 2002. The Arabidopsis phospholipase D family: characterization of
a Ca2+-independent and phosphatidylcholine-selective PLD1 with distinct regulatory
domains. Plant Physiol. 128: 1057-1068.
Wang, X. Plant Phospholipases. 2001. Annu. Rev. Plant Physiol. Plant Mol. Biol.
52:211-231.
Sang, Y., S. Zheng, W. Li, B. Huang, and X. Wang. 2001. Regulation of plant water loss
by manipulating the expression of phospholipase D. Plant Journal. 28: 135-144.
Wang, C. and X. Wang. 2001. A novel phospholipase D of Arabidopsis that is activated
by oleic acid and associated with the plasma membrane. Plant Physiol. 127: 1102-1112.
Sang, Y., D. Cui, and X. Wang. 2001. Phospholipase D- and phosphatidic acid-mediated
generation of superoxide in Arabidopsis. Plant Physiol. 126: 1449-1458.
Zien, C.A., C. Wang, X. Wang, and R. Welti. 2001. In-vivo substrates and the contribution
of the common phospholipase D, PLD, to wound-induced metabolism of lipids in
Arabidopsis. Biochim. Biophys. Acta. 1530: 236-248.
Wang, C., C. Zien, M. Afitlhile, R. Welti, D.F. Hildebrand, and X. Wang. 2000.
Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in
Arabidopsis. Plant Cell 12: 2237-2246.
Ransom-Hodgkins, W.D., I. Brglez, X. Wang, W.F. Boss. 2000. Calcium-induced
proteolysis of eEF1A. Plant Physiol. 122: 957-965.
Zhang, W. and X. Wang. 2000. Phospholipid metabolism and signal transduction in
plants. Chinese Bulletin of Life Sciences 12:100-104.
Wang, X. 2000. Multiple forms of phospholipase D in plants: the gene family, catalytic
and regulatory properties, and cellular functions. Progress in Lipid Research 39:109-149.
Wang, X., C. Wang, Y. Sang, L. Zheng, and C. Qin. 2000. Determining functions of
multiple phospholipase Ds in stress response in Arabidopsis. Bioch. Soc. Trans. 28: 813816.
Leach, J.E., L. Lloyd, D. McGee, X. Wang, and J.A. Guikema. 2000. Trafficking of plant
defense response compounds. In N.T. Keen, S. Mayama, J.E. Leach, and S. Tsuyumu eds:
7
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
Delivery and Perception of Pathogen Signals in Plants. APS Press, Minneapolis, MN. pp.
241-250.
Zheng, L., R. Krishnamoorthi, M. Zolkiewski, and X. Wang. 2000. Distinct calcium
binding properties of novel C2 domains of plant phospholipase D and . J. Biol. Chem.
275:19700-19706.
Lu, F., S. Zheng, and X. Wang. 1999. Subcellular distribution and tissue expression of
phospholipase D, , and  in Arabidopsis. Plant Physiol. 119:1371-1378.
Wang, X. 1999. The role of phospholipase D in signaling cascades. Plant Physiol. 120:
645-651.
Pappan, K and X. Wang. 1999. Plant phospholipase D is an acidic phospholipase active
at near-physiological Ca2+ concentrations. Arch. Biochem. Biophys. 368: 347-353.
Pappan, K. and X. Wang. 1999. Molecular and biochemical properties and physiological
roles of plant phospholipase D. Biochim. Biophys. Acta 1439: 151-166.
Qin, W., J.H. Dyer, L. Zheng, and X. Wang. 1999. Isolation and nucleotide sequence of
the fourth phospholipase D (accession No. AF138281), PLD2, from Arabidopsis thaliana.
Plant Physiol. 120:635.
Pappan, K., S. Austin-Brown, K. Chapman and X. Wang. 1998. Substrate selectivities and
lipid modulation of phospholipase D, , and  from plants. Arch. Biochem.
Biophys.353:131-140.
Ryu, S.B. and X. Wang. 1998. Increase in free linolenic and linoleic acids associated with
phospholipase D-mediated hydrolysis of phospholipids in wounded castor bean leaves.
Biochim. Biophys. Acta 1393:193-202.
Wang, X., K. Pappan, L. Fan, and W. Qin. 1998. Multiple forms of phospholipase D in
plant hormonal and stress signaling. In J. Sanchez et al. Eds: Advances in Plant Lipid
Research. Servicio de Publicaciones, Spain. pp 398-401.
Pappan, K. and X. Wang. 1998. Regulation of plant phospholipase D by
polyphosphoinositides and non-lamellar lipids. In J. Sanchez et al. Eds: Advances in Plant
Lipid Research. Servicio de Publicaciones, Spain. pp 402-405.
Lu, F., S. Zheng, and X. Wang. 1997. Antisense suppression of phospholipase D retards
abscisic acid- and ethylene- promoted senescence in postharvest Arabidopsis leaves. Plant
Cell. 9:2183-2196.
Pappan, K. S. Zheng, and X. Wang. 1997. Identification and characterization of a novel
phospholipase D that requires polyphosphoinositides and submicromolar calcium for
activity in Arabidopsis. J. Biol. Chem. 272:7048-7054.
Pappan, K. W. Qin, J.H. Dyer, L. Zheng, and X. Wang. 1997. Molecular cloning and
functional analysis of polyphosphoinositide-dependent phospholipase D, PLD, from
Arabidopsis. J. Biol. Chem. 272:7055-7061.
Qin, W., K. Pappan, and X. Wang.1997. Molecular heterogeneity of PLD: cloning of plant
PLD and regulation of PLD, , and  by polyphosphoinositides and Ca2+. J. Biol.
Chem. 272:28267-28273.
Wang, X., S. Zheng, K. Pappan, and L. Zheng. 1997. Characterization of phospholipase
D-overexpressed and suppressed transgenic tobacco and Arabidopsis. in J.P. Williams,
M.U. Khan, N.W. Lem eds: Physiology, Biochemistry and Molecular Biology of Plant
Lipids. Kluwer Academic Publishers, Boston, pp. 345-347.
Xu, L., S. Zheng, L. Zheng, and X. Wang. 1997. Promoter analysis and expression of a
phospholipase D gene from Ricinus communis L. Plant Physiol. 115:387-395.
8
133. Wang, X. 1997. Molecular analysis of phospholipase D. Trend. Plant Sci. 2:261-266.
134. Young, S.A., X. Wang, and J.E. Leach. 1996. Changes in the plasma membrane
distribution of rice phospholipase D during resistant interaction with Xanthomonas oryzae
pv oryzae. Plant Cell 8:1079-1090.
135. Xu, L., A.Q. Paulsen, S.B. Ryu, and X. Wang. 1996. Intracellular localization of
phospholipase D in leaves and seedling tissues of castor bean. Plant Physiol. 111:1001107.
136. Xu, L., L. Zheng, S.J. Coughlan, and X. Wang. 1996. Structure and analysis of
phospholipase D gene from Ricinus communis L. Plant Mol. Biol. 32:767-771.
137. Ryu, S.B. and X. Wang. 1996. Activation of phospholipase D and the possible mechanism
of activation in wound-induced lipid hydrolysis in castor bean leaves. Biochim. Biophys.
Acta 1303:243-250.
138. Ryu, S.B., L. Zheng, and X. Wang. 1996. Changes in phospholipase D expression in
soybeans during seed development and following germination. J. Am. Oil Chem. Soc.
73:1171-1176.
139. Dyer, J.H., S. Zheng, and X. Wang. 1996. Structural heterogeneity of phospholipase D in
ten dicots. Biochem. Biophys. Res. Commu. 221:31-36.
140. Ryu, S.B. and X. Wang. 1995. Expression of phospholipase D during castor bean leaf
senescence. Plant Physiol. 108:713-719.
141. Dyer, J.H., L. Zheng, and X. Wang. 1995. Cloning and nucleotide sequence of a cDNA
encoding phospholipase D from Arabidopsis (Accession No. U36381) (PGR 95-096).
Plant Physiol. 109:1497.
142. Wang, X., L. Xu, and L. Zheng. 1994. Cloning and expression of phosphatidylcholinehydrolyzing phospholipase D from Ricinus communis L. J. Biol. Chem. 269:2031220317.
143. Dyer, J.H., S.B. Ryu, and X. Wang. 1994. Multiple forms of phospholipase D following
seed germination and during leave development of castor bean. Plant Physiol. 105:715724.
144. Wang, X. 1993. Phospholipases. in T.S. Moore ed: Lipid Metabolism In Plants. CRC
Press, Boca Raton, FL, pp. 499-520.
145. Wang, X., J.H. Dyer, and L. Zheng. 1993. Purification and immunological analysis of
phospholipase D from germinating castor bean endosperm. Arch. Biochem. Biophys. 306:
486-494.
146. Zheng, L., X. Wang, and H. D. Braymer. 1992. Purification and N-terminal sequences of
two polypeptides encoded by mcrB from Escherichia coli K-12. Gene. 112:97-100.
147. Wang, X. and T.S. Moore, Jr. 1991. Phosphatidylethanolamine biosynthesis in castor
bean endosperm: Intracellular distribution and characteristics of CTP:ethanolaminephosphate cytidylyltransferase. J. Biol. Chem. 266:19981-19987.
148. Wang, X. and T.S. Moore, Jr. 1990. Phosphatidylcholine biosynthesis in castor bean
endosperm: purification and properties of CTP:choline-phosphate cytidylyltransferase.
Plant Physiol. 93:250-255.
149. Moore, Jr., T.S. and X. Wang. 1990. A comparison of CTP:cholinephosphate
cytidylyltransferase and CTP:ethanolaminephosphate cytidylyltransferase of castor bean
endosperm. In P.J. Quinn and J.L. Harwood Eds: Plant Lipid Biochemistry, Structure,
and Utilization. Portland Press, pp.251-253.
9
150. Wang, X. and T.S. Moore, Jr. 1989. Partial purification and characterization of
CTP:choline-phosphate cytidylyltransferase from castor bean. Arch. Biochem. Biophys.
274:388-347.
151. Wang, X., H.A. Norman, J.B. St. John, T. Yin, and D.F. Hildebrand. 1989. Comparison of
fatty acid composition in soybean tissues with low linolenate mutants. Phytochem. 28:411414.
152. Wang, X., G.Bookjans, M. Altschuler, G.B. Collins, and D.F. Hildebrand. 1988.
Alteration of the synthesis of lipoxygenase in the early stages of soybean cotyledon
culture. Physiol. Plant. 72:127-132.
153. Wang, X., K.A. Feldmann, and R.L. Scholl. 1988. A chlorate-hypersensitive, high
nitrate/chlorate uptake mutant of Arabidopsis thaliana. Physiol. Plant. 73:305-310.
154. Wang, X. and D.F. Hildebrand. 1987. Effect of a substituted pyridazinone on the decrease
of lipoxygenase activity in soybean cotyledons. Plant Science. 51:29-36.
155. Wang, X. D.F. Hildebrand, H.A. Norman, M.L. Dahmer, J.B. St. John, and G.B. Collins.
1987. Reduction of linolenate content in soybean cotyledons by a substituted pyridazinone.
Phytochem. 26:955-960.
156. Wang, X., D.F. Hildebrand, and G.B. Collins. 1987. Identification of proteins associated
with the change in linolenate content of soybean cotyledons. In P. K. Stumpf, J. B. Mudd,
and W. D. Nes Eds: The metabolism, Structure, and Function of Plant Lipids. Plenum
Press, pp.533-535.
157. Hildebrand, D.F., M. Altschuler, G. Bookjans, G. Benzion, T.R. Hamilton-Kemp, R. A.
Anderson, J.G. Rodriguez, J.C. Polacco, M.L. Dahmer, A.G. Hunt, X. Wang, and G.B.
Collins. 1987. Physiological and transformational analysis of lipoxygenase. In P.K.
Stumpf, J.B. Mudd, and W.D. Nes Eds: The metabolism, Structure, and Function of
Plant Lipids. Plenum Press, pp. 715-717.
158. Wang, X., R.L. Scholl, and K.A. Feldmann. 1986. Characterization of a chloratehypersensitive, high nitrate reductase Arabidopsis thaliana mutant. Theor. Appl. Genet.
72:328-336.
BOOK and Special Volume Edited
Wang X. (ed.), “Phospholipases in Plant Signaling”, 2014, DOI 10.1007/978-3-64242011-5_1, © Springer-Verlag Berlin Heidelberg.
Wang X and Chapman K (eds), “Lipid Signaling in Plants” Frontiers Plant Sci. 2012,
March, Volume 3 Frontiers in Plant Science & E-Book
Molecular Plant Special Issue Co-Editor, “Plant Metabolism and Modern Agriculture”
Molecular Plant, 2012, March, Volume 5 Issue 2
10
Similar