Download Arabidopsis mutants point to pathways of microtubule

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Table 1. Arabidopsis mutations of genes with microtubule-associated functions. Only mutants
for which the genetic lesion has been reported are presented. This list contains sensu strictu MAP
mutants, mutants of the tubulin folding machinery as well as further mutants for which distinctive
microtubule-related phenotypes have been reported.
Homology
AGI
number
Mutant
angustifolia1
similar to CtBP-
an1
Bars
At1g01510
Main morphological and sub-
Miscellaneous
Reference
cellular phenotype
- reduced trichome branching
(Kim et al., 2002)
- microtubule density
(Folkers et al.,
- elongated leaves
2002)
- microtubule orientation
arl2
ARF-like
(titan5,
GTPase family,
hallimasch)
tubulin folding
armadillo-repeat
kinesin (plant-
containing
specific class)
At2g18390
- mutants arrest during
(Steinborn et al.,
embryogenesis
At1g01950
2002)
- helical root growth
(Sakai et al.,
2008)
kinesin ark2
atk1
kinesin 14
At4g21270
class
- atk1-1 mutant male meiotic
(Chen et al.,
spindles (metaphase1) were
2002; Marcus et
broad, unfocused and multi-
al., 2003)
axial
atk5
kinesin 14
At4g05190
class
- plants appear
(Ambrose et al.,
morphologically normal
2005; Ambrose
- involved in early mitotic
and Cyr, 2007)
spindle formation
champignon
tubulin-folding
(titan1)
co-factor D
clasp-1
CLASP
At3g60740
- mutants arrest during
(Steinborn et al.,
embryogenesis
At2g20190
homologue
2002)
- plants are dwarfed
(Ambrose et al.,
- less populated cortical
2007; Kirik et al.,
microtubules array
2007)
- mitotic arrays are aberrant
eb1-a
End Binding1
At3g47690
- helical growth
double and
(Bisgrove et al.,
eb1-b
homologue
At5g62500
- some alleles oryzalin
triple mutants
2008)
eb1-c
At5g67270
hypersensitive
reveal
phenotype
endosperm
plant MAP
At2g44190
defective1
- endosperm does not
(Pignocchi et al.,
cellularize
ede1
2009)
- cytokinesis defects in
embryo
fass
phosphatase
fs1
PP2A
(ton2)
regulatory
and cortical microtubules are
Camilleri et al.,
subunit B”
misaligned
2002)
fragile fiber1
kinesin 4 class
At5g18580
At5g47820
fra1
- no division plane alignment
(Torres-Ruiz and
- lacks pre-prophase bands
Jurgens, 1994;
- reduced mechanical
(Zhong et al.,
strength of fibers
2002; Zhou et al.,
- abnormal orientation of
2007)
cellulose microfibrils
fragile fiber2
katanin p60
fra2
subunit
At1g80350
(bot1, lue1,
erh3)
- stunted growth
(Bichet et al.,
- ectopic root hairs
2001; Burk et al.,
- delayed establishment of
2001; Webb et
the cortical microtubule array
al., 2002;
Bouquin et al.,
2003)
hinkel
kinesin 14
(nack1)
class
At1g18370
- cytokinesis defects
(Nishihama et al.,
- phragmoplast microtubules
2002; Strompen
do not re-organize
ibo1
NIMA-related
(nek6)
protein kinase
At3g44200
- epidermal outgrowth
et al., 2002)
GFP fusions
(Motose et al.,
label
2008; Sakai et
microtubules;
al., 2008)
interaction with
ARK kinesins.
kiesel
tubulin-folding
kis
co-factor A
At2g30410
- shape defect in trichomes
(Kirik et al.,
- cell defect in etiolated
2002b; Steinborn
hypocotyls
et al., 2002)
- microtubule orientation
abnormal
kinesin13a
kinesin 13
At3g16630
class
map18
microtubule
binding motif of
MAP1B
- overbranched trichome
(Lu et al., 2005)
- Golgi stacks clustered
At5g44610
- cell shape defects
based on RNAi
(Wang et al.,
- microtubule orientation
data
2007)
defective
map70-5
plant MAP
At4g17220
- reduced inflorescence
growth
based on RNAi
(Korolev et al.,
data
2007)
temperature-
(Whittington et
- helical organ growth in
overexpressors
microtubule
XMAP215 /
organization1
TOGp
swelling, stunted organs and
sensitive alleles
al., 2001; Twell et
mor1
homologue
cytokinesis defects
present
al., 2002)
At2g35630
(gem1)
- helical organ growth, cell
- reduced microtubule length
morphogenesis
kinesin (plant-
of root-hairs
specific class)
At3g54870
- split root hairs
(Jones et al.,
- root hair microtubules with
2006; Yang et al.,
mrh2
ectopic localization in
2007; Sakai et
(ark1)
endoplasm
al., 2008)
nedd1
WD40 repeat
At5g05970
protein
pfifferling
tubulin-folding
tubulin folding
plp3
(Zeng et al.,
development
At1g71440
co-factor E
phosducin 3
- mitotic defects during pollen
2009)
- mutants arrest during
(Steinborn et al.,
embryogenesis
At3g50960
At5g66410
- disoriented cell growth and
cytokinesis defects
- disrupted microtubule arrays
2002)
includes RNAi
(Castellano and
data, double
Sablowski, 2008)
knock-down
reveals
phenotype
phragmoplast-
kinesin 12
At3g17360
orienting
class
At3g19050
kinesin
kinesin 12
At4g14150
associated
class
At3g23670
pakrp2
double mutants
(Müller et al.,
reveal
2006)
phenotype
and misplaced cell walls
phramoplast-
pakrp1 and
cytokinesis
- misoriented mitotic arrays
pok1 and pok2
kinesin
- abnormal plane of
- defects in the first post-
double mutants
meiotic division of the male
reveal
gametophyte1
phenotype
- phragmoplasts of the
microspore become
disorganized
(Lee et al., 2007)
pleiade
PRC1 / Ase1 /
(map65-3)
MAP65
At5g51600
homologue
- cytokinesis defects in roots
(Müller et al.,
- the cytokinetic phragmoplast
2002; Müller et
is distorted
al., 2004;
Caillaud et al.,
2008)
porcino
tubulin-folding
por
co-factor C
At4g39920
- mutants arrest early during
(Kirik et al.,
embryogenesis
2002a; Steinborn
- strong mutants have no
et al., 2002)
detectable microtubules
propyzamide-
similar to
hypersensitive1
MAPK
phs1
phosphatase
prefoldin6
prefoldin
At5g23720
At1g29990
homologue
- helical growth
dominant-
(Naoi and
- cortical microtubules less
negative allele,
Hashimoto, 2004)
ordered and more
knock-out is
fragmented
embryo-lethal
- shorter roots and etiolated
(Gu et al., 2008)
hypocotyls
ran-gap mutants
RanGAP
At3g63130
- oblique cell walls in roots
based on a
rg1
homologue
At5g19320
- cell wall stubs
combination of
rg2
(Xu et al., 2008)
RNAi with TDNA insertion
root swelling7
kinesin 5 class
At2g28620
rsw7
- swollen roots
temperature-
(Bannigan et al.,
- cortical and spindle
sensitive allele
2007)
microtubules misoriented
rop-interacting1
CRIB motif
At2g33460
ric1
- misformed leaf epidermal
(Fu et al., 2005)
cells
- fewer, shorter and less
organized microtubules
runkel
kinase domain
ruk
and HEAT
organization and arrested
(emb3013)
repeats
cell plate expansion
spira1-like 2
plant MAP
At5g18700
At1g69230
- abnormal phragmoplast
- enhanced helical organ
spira1-like 3
At3g02180
growth when analyzed in
spira1-like 4
At5g15600
spr1 background
(Krupnova et al.,
2009)
(Nakajima et al.,
2006)
spiral1
plant MAP
At2g03680
spr1
- helical growth and swollen
cells
(sku6)
- helical microtubule arrays
(Furutani et al.,
2000; Nakajima
et al., 2004;
Sedbrook et al.,
2004)
spiral3
GCP2
spr3
homologue
through recessive missense
with grip motif
mutation
At5g17410
(SPC98-like)
- right-handed helical growth
(Nakamura and
Hashimoto, 2009)
- knock-outs have
gametophytic defects
stud1
kinesin 14
std1
class
At3g43210
(tetraspore,
(Hülskamp et al.,
abnormal pollen shape
1997; Spielman
- male meiotic microtubule
nack2)
tangled1
- meiosis defects lead to
array fails to form
plant MAP
At3g05330
tan1
- abnormal plane of
cytokinesis
et al., 1997; Yang
et al., 2003)
(Walker et al.,
2007)
- PPB alignment and
phragmoplast attraction
impaired
tonneau1
LisH domain
ton1
TOF motif
At3g55000
- no division plane alignment
(Traas et al.,
- no PPB formed
1995; Nacry et
PLL motif
al., 1998;
Azimzadeh et al.,
2008)
tortifolia1
plant MAP
At4g27060
tor1
(spr2, cn)
- helical organ growth
(Bürger, 1971;
- cortical microtubules
Buschmann et
misaligned and later helical
- altered microtubule
dynamics
tortifolia1-like
(spr2-like)
plant MAP
At1g50890
- enhances twisting in tor1
background
al., 2004; Shoji et
al., 2004; Yao et
al., 2008)
(Yao et al., 2008)
tua2
-tubulin
At1g50010
tua3
GTP binding
At5g19770
tua4
At1g04820
tua5
At5g19780
tua6
At4g14960
(lefty1+2, tor2)
tua6cys213 is a
(Bao et al., 2001;
helical microtubule arrays in
temperature
Thitamadee et
dominant-negative mutants
sensitive allele;
al., 2002; Ishida
antisense data
and Hashimoto,
available.
2007; Ishida et
- helical organ twisting and
- altered microtubule
dynamics in helical growth
background
al., 2007;
- stunted growth in -tubulin
Buschmann et
al., 2009)
antisense plants
tub1
-tubulin
At1g75780
- helical organ twisting
dominant-
(Ishida et al.,
tub2
GTPase
At5g62690
- helical microtubule arrays
negative tubulin
2007)
tub3
At5g62700
tub4
At5g44340
mutations

tug1
-tubulin
tug2
At3g61650
At5g05620
- gametophytic or seedling
lethal
- aberrant cytokinetic
microtubule arrays
double mutants
(Binarova et al.,
reveal
2006; Pastuglia
phenotype,
et al., 2006)
RNAi data also
available
ungud9
plant MAP
At2g34680
(air9)
- embryo lethal and
(Lalanne et al.,
gametophyte defective
2004;
Buschmann et
al., 2006;
Buschmann et
al., 2007)
wave-
TPX2 domain
dampened2
homology
At5g28646
- helical growth and impaired
root waving
wvd2
overexpression
(Yuen et al.,
and RNAi
2003; Perrin et
- helical microtubule arrays
wave-
TPX2 domain
dampened-like
homology
At3g04630
- helical growth and impaired
root waving
al., 2007)
overexpression
(Yuen et al.,
and RNAi
2003; Perrin et
wdl1
al., 2007)
zwichel
Ca2+ /
zwi
(kcbp)
- fewer trichome branches
zwi mutants
(Oppenheimer et
calmodulin –
and impaired branch
may be
al., 1997;
regulated class
elongation
hypomorphic
Krishnakumar
14 kinesin
At5g65930
and
Oppenheimer,
1999; Reddy et
al., 2004)
Supplemental References
Ambrose, J.C., and Cyr, R. (2007). The kinesin ATK5 functions in early spindle assembly in Arabidopsis.
Plant Cell 19, 226-236.
Ambrose, J.C., Li, W., Marcus, A., Ma, H., and Cyr, R. (2005). A minus-end-directed kinesin with plusend tracking protein activity is involved in spindle morphogenesis. Mol. Biol. Cell 16, 1584-1592.
Ambrose, J.C., Shoji, T., Kotzer, A.M., Pighin, J.A., and Wasteneys, G.O. (2007). The Arabidopsis
CLASP gene encodes a microtubule-associated protein involved in cell expansion and division.
Plant Cell 19, 2763-2775.
Azimzadeh, J., Nacry, P., Christodoulidou, A., Drevensek, S., Camilleri, C., Amiour, N., Parcy, F.,
Pastuglia, M., and Bouchez, D. (2008). Arabidopsis TONNEAU1 Proteins Are Essential for
Preprophase Band Formation and Interact with Centrin. Plant Cell 20, 2146-2159.
Bannigan, A., Scheible, W.R., Lukowitz, W., Fagerstrom, C., Wadsworth, P., Somerville, C., and
Baskin, T.I. (2007). A conserved role for kinesin-5 in plant mitosis. J. Cell Sci. 120, 2819-2827.
Bao, Y., Kost, B., and Chua, N.H. (2001). Reduced expression of alpha-tubulin genes in Arabidopsis
thaliana specifically affects root growth and morphology, root hair development and root
gravitropism. Plant J. 28, 145-157.
Bichet, A., Desnos, T., Turner, S., Grandjean, O., and Hofte, H. (2001). BOTERO1 is required for
normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J.
25, 137-148.
Binarova, P., Cenklova, V., Prochazkova, J., Doskocilova, A., Volc, J., Vrlik, M., and Bogre, L.
(2006). Gamma-tubulin is essential for acentrosomal microtubule nucleation and coordination of
late mitotic events in Arabidopsis. Plant Cell 18, 1199-1212.
Bisgrove, S.R., Lee, Y.R., Liu, B., Peters, N.T., and Kropf, D.L. (2008). The microtubule plus-end
binding protein EB1 functions in root responses to touch and gravity signals in Arabidopsis. Plant
Cell 20, 396-410.
Bouquin, T., Mattsson, O., Naested, H., Foster, R., and Mundy, J. (2003). The Arabidopsis lue1
mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation
during cell growth. J. Cell Sci. 116, 791-801.
Bürger, D. (1971). Die morphologischen Mutanten des Göttinger Arabidopsis-Sortiments, einschließlich
der Mutanten mit abweichender Samenfarbe. Arabidopsis Inf. Serv. 8, 36-42.
Burk, D.H., Liu, B., Zhong, R., Morrison, W.H., and Ye, Z.H. (2001). A katanin-like protein regulates
normal cell wall biosynthesis and cell elongation. Plant Cell 13, 807-827.
Buschmann, H., Sanchez-Pulido, L., Andrade-Navarro, M.A., and Lloyd, C.W. (2007). Homologues of
Arabidopsis Microtubule-Associated AIR9 in Trypanosomatid Parasites: Hints on Evolution and
Function. Plant Signal. Behav. 2, 296-299.
Buschmann, H., Hauptmann, M., Niessing, D., Lloyd, C.W., and Schäffner, A.R. (2009). Helical
Growth of the Arabidopsis Mutant tortifolia2 Does Not Depend on Cell Division Patterns but
Involves Handed Twisting of Isolated Cells. Plant Cell 21, 2090-2106.
Buschmann, H., Chan, J., Sanchez-Pulido, L., Andrade-Navarro, M.A., Doonan, J.H., and Lloyd,
C.W. (2006). Microtubule-Associated AIR9 Recognizes the Cortical Division Site at Preprophase
and Cell-Plate Insertion. Curr. Biol. 16, 1938-1943.
Buschmann, H., Fabri, C.O., Hauptmann, M., Hutzler, P., Laux, T., Lloyd, C.W., and Schäffner, A.R.
(2004). Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubuleassociated protein. Curr. Biol. 14, 1515-1521.
Caillaud, M.C., Lecomte, P., Jammes, F., Quentin, M., Pagnotta, S., Andrio, E., de Almeida Engler,
J., Marfaing, N., Gounon, P., Abad, P., and Favery, B. (2008). MAP65-3 microtubuleassociated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. Plant
Cell 20, 423-437.
Camilleri, C., Azimzadeh, J., Pastuglia, M., Bellini, C., Grandjean, O., and Bouchez, D. (2002). The
Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory
subunit essential for the control of the cortical cytoskeleton. Plant Cell 14, 833-845.
Castellano, M.M., and Sablowski, R. (2008). Phosducin-like protein 3 is required for microtubuledependent steps of cell division but not for meristem growth in Arabidopsis. Plant Cell 20, 969981.
Chen, C., Marcus, A., Li, W., Hu, Y., Calzada, J.P., Grossniklaus, U., Cyr, R.J., and Ma, H. (2002).
The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development
129, 2401-2409.
Folkers, U., Kirik, V., Schobinger, U., Falk, S., Krishnakumar, S., Pollock, M.A., Oppenheimer, D.G.,
Day, I., Reddy, A.S., Jurgens, G., and Hulskamp, M. (2002). The cell morphogenesis gene
ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the
microtubule cytoskeleton. Embo J. 21, 1280-1288.
Fu, Y., Gu, Y., Zheng, Z., Wasteneys, G., and Yang, Z. (2005). Arabidopsis interdigitating cell growth
requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120, 687700.
Furutani, I., Watanabe, Y., Prieto, R., Masukawa, M., Suzuki, K., Naoi, K., Thitamadee, S., Shikanai,
T., and Hashimoto, T. (2000). The SPIRAL genes are required for directional control of cell
elongation in Arabidopsis thaliana. Development 127, 4443-4453.
Gu, Y., Deng, Z., Paredez, A.R., Debolt, S., Wang, Z.Y., and Somerville, C. (2008). Prefoldin 6 is
required for normal microtubule dynamics and organization in Arabidopsis. Proc. Natl. Acad. Sci.
USA.
Hülskamp, M., Parekh, N.S., Grini, P., Schneitz, K., Zimmermann, I., Lolle, S.J., and Pruitt, R.E.
(1997). The STUD gene is required for male-specific cytokinesis after telophase II of meiosis in
Arabidopsis thaliana. Dev. Biol. 187, 114-124.
Ishida, T., and Hashimoto, T. (2007). An Arabidopsis thaliana tubulin mutant with conditional rootskewing phenotype. J. Plant Res. 120, 635-640.
Ishida, T., Kaneko, Y., Iwano, M., and Hashimoto, T. (2007). Helical microtubule arrays in a collection
of twisting tubulin mutants of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104, 8544-8549.
Jones, M.A., Raymond, M.J., and Smirnoff, N. (2006). Analysis of the root-hair morphogenesis
transcriptome reveals the molecular identity of six genes with roles in root-hair development in
Arabidopsis. Plant J. 45, 83-100.
Kim, G.T., Shoda, K., Tsuge, T., Cho, K.H., Uchimiya, H., Yokoyama, R., Nishitani, K., and Tsukaya,
H. (2002). The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell
expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene
involved in cell-wall formation. Embo J. 21, 1267-1279.
Kirik, V., Herrmann, U., Parupalli, C., Sedbrook, J.C., Ehrhardt, D.W., and Hulskamp, M. (2007).
CLASP localizes in two discrete patterns on cortical microtubules and is required for cell
morphogenesis and cell division in Arabidopsis. J. Cell Sci. 120, 4416-4425.
Kirik, V., Mathur, J., Grini, P.E., Klinkhammer, I., Adler, K., Bechtold, N., Herzog, M., Bonneville,
J.M., and Hulskamp, M. (2002a). Functional analysis of the tubulin-folding cofactor C in
Arabidopsis thaliana. Curr. Biol. 12, 1519-1523.
Kirik, V., Grini, P.E., Mathur, J., Klinkhammer, I., Adler, K., Bechtold, N., Herzog, M., Bonneville,
J.M., and Hulskamp, M. (2002b). The Arabidopsis TUBULIN-FOLDING COFACTOR A gene is
involved in the control of the alpha/beta-tubulin monomer balance. Plant Cell 14, 2265-2276.
Korolev, A.V., Buschmann, H., Doonan, J.H., and Lloyd, C.W. (2007). AtMAP70-5, a divergent
member of the MAP70 family of microtubule-associated proteins, is required for anisotropic cell
growth in Arabidopsis. J. Cell Sci. 120, 2241-2247.
Krishnakumar, S., and Oppenheimer, D.G. (1999). Extragenic suppressors of the Arabidopsis zwi-3
mutation identify new genes that function in trichome branch formation and pollen tube growth.
Development 126, 3079-3088.
Krupnova, T., Sasabe, M., Ghebreghiorghis, L., Gruber, C.W., Hamada, T., Dehmel, V., Strompen,
G., Stierhof, Y.D., Lukowitz, W., Kemmerling, B., Machida, Y., Hashimoto, T., Mayer, U., and
Jurgens, G. (2009). Microtubule-Associated Kinase-like Protein RUNKEL for Cell Plate
Expansion in Arabidopsis Cytokinesis. Curr. Biol. 19, 6 pages.
Lalanne, E., Michaelidis, C., Moore, J.M., Gagliano, W., Johnson, A., Patel, R., Howden, R., VielleCalzada, J.P., Grossniklaus, U., and Twell, D. (2004). Analysis of transposon insertion mutants
highlights the diversity of mechanisms underlying male progamic development in Arabidopsis.
Genetics 167, 1975-1986.
Lee, Y.R., Li, Y., and Liu, B. (2007). Two Arabidopsis phragmoplast-associated kinesins play a critical
role in cytokinesis during male gametogenesis. Plant Cell 19, 2595-2605.
Lu, L., Lee, Y.R., Pan, R., Maloof, J.N., and Liu, B. (2005). An internal motor kinesin is associated with
the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16,
811-823.
Marcus, A.I., Li, W., Ma, H., and Cyr, R.J. (2003). A kinesin mutant with an atypical bipolar spindle
undergoes normal mitosis. Mol. Biol. Cell 14, 1717-1726.
Motose, H., Tominaga, R., Wada, T., Sugiyama, M., and Watanabe, Y. (2008). A NIMA-related protein
kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the
association with microtubules. Plant J. 54, 829-844.
Müller, S., Han, S., and Smith, L.G. (2006). Two kinesins are involved in the spatial control of
cytokinesis in Arabidopsis thaliana. Curr. Biol. 16, 888-894.
Müller, S., Fuchs, E., Ovecka, M., Wysocka-Diller, J., Benfey, P.N., and Hauser, M.T. (2002). Two
new loci, PLEIADE and HYADE, implicate organ-specific regulation of cytokinesis in Arabidopsis.
Plant Physiol. 130, 312-324.
Müller, S., Smertenko, A., Wagner, V., Heinrich, M., Hussey, P.J., and Hauser, M.T. (2004). The plant
microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function.
Curr. Biol. 14, 412-417.
Nacry, P., Camilleri, C., Courtial, B., Caboche, M., and Bouchez, D. (1998). Major chromosomal
rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149, 641-650.
Nakajima, K., Kawamura, T., and Hashimoto, T. (2006). Role of the SPIRAL1 gene family in anisotropic
growth of Arabidopsis thaliana. Plant Cell Physiol. 47, 513-522.
Nakajima, K., Furutani, I., Tachimoto, H., Matsubara, H., and Hashimoto, T. (2004). SPIRAL1
encodes a plant-specific microtubule-localized protein required for directional control of rapidly
expanding Arabidopsis cells. Plant Cell 16, 1178-1190.
Nakamura, M., and Hashimoto, T. (2009). A mutation in the Arabidopsis -tubulin-containing complex
causes helical growth and abnormal microtubule branching. J. Cell Sci. 122, 2208-2217.
Naoi, K., and Hashimoto, T. (2004). A semidominant mutation in an Arabidopsis mitogen-activated
protein kinase phosphatase-like gene compromises cortical microtubule organization. Plant Cell
16, 1841-1853.
Nishihama, R., Soyano, T., Ishikawa, M., Araki, S., Tanaka, H., Asada, T., Irie, K., Ito, M., Terada, M.,
Banno, H., Yamazaki, Y., and Machida, Y. (2002). Expansion of the cell plate in plant
cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109, 87-99.
Oppenheimer, D.G., Pollock, M.A., Vacik, J., Szymanski, D.B., Ericson, B., Feldmann, K., and
Marks, M.D. (1997). Essential role of a kinesin-like protein in Arabidopsis trichome
morphogenesis. Proc. Natl. Acad. Sci. USA 94, 6261-6266.
Pastuglia, M., Azimzadeh, J., Goussot, M., Camilleri, C., Belcram, K., Evrard, J.L., Schmit, A.C.,
Guerche, P., and Bouchez, D. (2006). Gamma-tubulin is essential for microtubule organization
and development in Arabidopsis. Plant Cell 18, 1412-1425.
Perrin, R.M., Wang, Y., Yuen, C.Y., Will, J., and Masson, P.H. (2007). WVD2 is a novel microtubuleassociated protein in Arabidopsis thaliana. Plant J. 49, 961-971.
Pignocchi, C., Minns, G.E., Nesi, N., Koumproglou, R., Kitsios, G., Benning, C., Lloyd, C.W.,
Doonan, J.H., and Hills, M.J. (2009). ENDOSPERM DEFECTIVE1 Is a Novel MicrotubuleAssociated Protein Essential for Seed Development in Arabidopsis. Plant Cell.
Reddy, V.S., Day, I.S., Thomas, T., and Reddy, A.S. (2004). KIC, a novel Ca2+ binding protein with one
EF-hand motif, interacts with a microtubule motor protein and regulates trichome morphogenesis.
Plant Cell 16, 185-200.
Sakai, T., Honing, H., Nishioka, M., Uehara, Y., Takahashi, M., Fujisawa, N., Saji, K., Seki, M.,
Shinozaki, K., Jones, M.A., Smirnoff, N., Okada, K., and Wasteneys, G.O. (2008). Armadillo
repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell
morphogenesis in Arabidopsis. Plant J. 53, 157-171.
Sedbrook, J.C., Ehrhardt, D.W., Fisher, S.E., Scheible, W.R., and Somerville, C.R. (2004). The
Arabidopsis SKU6/SPIRAL1 Gene Encodes a Plus End-Localized Microtubule-Interacting Protein
Involved in Directional Cell Expansion. Plant Cell 16, 1506-1520.
Shoji, T., Narita, N.N., Hayashi, K., Asada, J., Hamada, T., Sonobe, S., Nakajima, K., and
Hashimoto, T. (2004). Plant-specific microtubule-associated protein SPIRAL2 is required for
anisotropic growth in Arabidopsis. Plant Physiol. 136, 3933-3944.
Spielman, M., Preuss, D., Li, F.L., Browne, W.E., Scott, R.J., and Dickinson, H.G. (1997).
TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development
124, 2645-2657.
Steinborn, K., Maulbetsch, C., Priester, B., Trautmann, S., Pacher, T., Geiges, B., Kuttner, F.,
Lepiniec, L., Stierhof, Y.D., Schwarz, H., Jurgens, G., and Mayer, U. (2002). The Arabidopsis
PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell
growth. Genes Dev 16, 959-971.
Strompen, G., El Kasmi, F., Richter, S., Lukowitz, W., Assaad, F.F., Jurgens, G., and Mayer, U.
(2002). The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis
and is expressed in a cell cycle-dependent manner. Curr. Biol. 12, 153-158.
Thitamadee, S., Tuchihara, K., and Hashimoto, T. (2002). Microtubule basis for left-handed helical
growth in Arabidopsis. Nature 417, 193-196.
Torres-Ruiz, R.A., and Jurgens, G. (1994). Mutations in the FASS gene uncouple pattern formation and
morphogenesis in Arabidopsis development. Development 120, 2967-2978.
Traas, J., Bellini, C., Nacry, P., Kronenberger, J., Bouchez, D., and Caboche, M. (1995). Normal
differentiation patterns in plants lacking microtubular preprophase bands. Nature 375, 676–677.
Twell, D., Park, S.K., Hawkins, T.J., Schubert, D., Schmidt, R., Smertenko, A., and Hussey, P.J.
(2002). MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat.
Cell Biol. 4, 711-714.
Walker, K.L., Muller, S., Moss, D., Ehrhardt, D.W., and Smith, L.G. (2007). Arabidopsis TANGLED
identifies the division plane throughout mitosis and cytokinesis. Curr. Biol. 17, 1827-1836.
Wang, X., Zhu, L., Liu, B., Wang, C., Jin, L., Zhao, Q., and Yuan, M. (2007). Arabidopsis
MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing
cortical microtubules. Plant Cell 19, 877-889.
Webb, M., Jouannic, S., Foreman, J., Linstead, P., and Dolan, L. (2002). Cell specification in the
Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR 3 - a katanin-p60
protein. Development 129, 123-131.
Whittington, A.T., Vugrek, O., Wei, K.J., Hasenbein, N.G., Sugimoto, K., Rashbrooke, M.C., and
Wasteneys, G.O. (2001). MOR1 is essential for organizing cortical microtubules in plants. Nature
411, 610-613.
Xu, X.M., Zhao, Q., Rodrigo-Peiris, T., Brkljacic, J., He, C.S., Muller, S., and Meier, I. (2008).
RanGAP1 is a continuous marker of the Arabidopsis cell division plane. Proc. Natl. Acad. Sci.
USA 105, 18637-18642.
Yang, C.Y., Spielman, M., Coles, J.P., Li, Y., Ghelani, S., Bourdon, V., Brown, R.C., Lemmon, B.E.,
Scott, R.J., and Dickinson, H.G. (2003). TETRASPORE encodes a kinesin required for male
meiotic cytokinesis in Arabidopsis. Plant J. 34, 229-240.
Yang, G., Gao, P., Zhang, H., Huang, S., and Zheng, Z.L. (2007). A mutation in MRH2 kinesin
enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase
in Arabidopsis. PLoS ONE 2, e1074.
Yao, M., Wakamatsu, Y., Itoh, T.J., Shoji, T., and Hashimoto, T. (2008). Arabidopsis SPIRAL2
promotes uninterrupted microtubule growth by suppressing the pause state of microtubule
dynamics. J. Cell Sci. 121, 2372-2381.
Yuen, C.Y., Pearlman, R.S., Silo-Suh, L., Hilson, P., Carroll, K.L., and Masson, P.H. (2003). WVD2
and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis. Plant
Physiol. 131, 493-506.
Zeng, C.J., Lee, Y.R., and Liu, B. (2009). The WD40 repeat protein NEDD1 functions in microtubule
organization during cell division in Arabidopsis thaliana. Plant Cell 21, 1129-1140.
Zhong, R., Burk, D.H., Morrison, W.H., 3rd, and Ye, Z.H. (2002). A kinesin-like protein is essential for
oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14, 3101-3117.
Zhou, J., Qiu, J., and Ye, Z.-H. (2007). Alteration in secondary wall deposition by overexpression of the
fragile fiber1 kinesin-like protein in Arabidopsis. J. Integr. Plant Biol. 49, 1235–1243.
Related documents